Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T05:32:17.402Z Has data issue: false hasContentIssue false

Cross-breeding cattle for milk production in the tropics: achievements, challenges and opportunities

Published online by Cambridge University Press:  08 April 2013

E. Galukande
Affiliation:
National Animal Genetic Resources Centre and Data Bank, Entebbe, Uganda BOKU – University of Natural Resources and Applied Life Sciences, Vienna, Austria International Livestock Research Institute, Nairobi, Kenya
H. Mulindwa
Affiliation:
BOKU – University of Natural Resources and Applied Life Sciences, Vienna, Austria International Livestock Research Institute, Nairobi, Kenya National Livestock Resources Research Institute, Kampala, Uganda
M. Wurzinger*
Affiliation:
BOKU – University of Natural Resources and Applied Life Sciences, Vienna, Austria International Livestock Research Institute, Nairobi, Kenya
R. Roschinsky
Affiliation:
BOKU – University of Natural Resources and Applied Life Sciences, Vienna, Austria National Livestock Resources Research Institute, Kampala, Uganda
A.O. Mwai
Affiliation:
International Livestock Research Institute, Nairobi, Kenya
J. Sölkner
Affiliation:
BOKU – University of Natural Resources and Applied Life Sciences, Vienna, Austria
*
Correspondence to: Maria Wurzinger, BOKU –University of Natural Resources and Life Sciences, Vienna, Austria and Department of Sustainable Agricultural Systems, Division of Livestock Sciences, Gregor-Mendel-Street 33, 1180 Vienna, Austria. email: [email protected]
Get access

Summary

This paper reviews experiences with cross-breeding for milk production in the tropics. Data were compiled from 23 different studies evaluating the performance of different grades of cross-bred animals as well as local breeds. Relative performance of indigenous breeds compared with different grades of cross-breeds was calculated for three climatic zones. Traits considered were milk yield per lactation, age at first calving, services per conception, lifetime milk yield and total number of lactations completed. At 50 percent Bos taurus blood, lactation milk yields were 2.6, 2.4 and 2.2 times higher than those of local cattle in the highland, tropical wet and dry, and semi-arid climatic zones, respectively; lactation lengths increased by 1.2, 1.2 and 1.9 months in the above-mentioned climatic zones, respectively; there was a reduction in calving interval by 0.8 times and in age at first calving by 0.9 times. Similarly, cross-breds with 50 percent B. taurus genes had 1.8 times higher lifetime milk yields and a 1.2 times higher number of total lactations. Although cross-breeding faces a number of challenges such as better infrastructure, higher demand for health care, there are many advantages of using it. These are higher production per animal, higher income for the families and provision of high-value food. It is therefore likely to continue to be an important livestock improvement tool in the tropics in the future, where farmers can provide sufficient management for maintaining animals with higher input requirements and access to the milk market can be secured.

Resumen

Este artículo hace un repaso por las experiencias obtenidas con el cruzamiento de razas para la producción de leche en los trópicos. Se recopilaron datos de 23 estudios diferentes que evaluaron los rendimientos de animales con distinto grado de cruce así como de animales de razas autóctonas. Se compararon los rendimientos de las razas autóctonas con los de animales con distinto grado de cruce para tres zonas climáticas. Las características consideradas fueron el rendimiento lechero por lactación, la edad al primer parto, el número de servicios por concepción, la producción lechera total a lo largo de la vida del animal y el número total de lactaciones completadas. Con un 50 por ciento de sangre Bos taurus, los rendimientos lecheros por lactación fueron 2,6, 2,4 y 2,2 veces mayores que los del ganado bovino autóctono en las zonas climáticas de las Tierras Altas, Tropical Húmeda y Seca y Semiárida, respectivamente; la duración de la lactación se incrementó en 1,2, 1,2 y 1,9 meses en las zonas climáticas anteriormente mencionadas, respectivamente; el intervalo entre partos y la edad al primer parto se redujeron, respectivamente, 0,8 y 0,9 veces. Asimismo, los animales cruzados con una genética 50 por ciento Bos taurus tuvieron rendimientos lecheros, para la totalidad de su vida productiva, 1,8 veces mayores y un número total de lactaciones 1,2 veces mayor. Si bien el cruzamiento implica afrontar una serie de retos como una mejor infraestructura o una mayor demanda de atención sanitaria, su uso presenta múltiples ventajas como son una mayor productividad por animal, mayores ingresos para las familias y el aprovisionamiento en alimentos de alto valor. Por ello, el cruzamiento seguirá seguramente siendo una importante herramienta de mejora del ganado en los Trópicos, donde los ganaderos pueden aportar las condiciones adecuadas de manejo para mantener animales con elevadas necesidades, garantizándose así el acceso al mercado de la leche.

Résumé

Ce travail de synthèse fait le point des expériences obtenues avec le croisement de races pour la production laitière sous les tropiques. Les données de 23 études différentes ayant évalué les performances d'animaux avec différent degré de croisement ainsi que ceux d'animaux de races indigènes ont été compilées. Les performances des races indigènes ont été comparées à celles d'animaux avec différent degré de croisement pour trois zones climatiques. Les caractères considérés ont été la production laitière par lactation, l'âge au premier vêlage, le nombre de services par conception, la production laitière sur la durée de la vie de l'animal et le nombre total de lactations complétées. Avec un 50 pour cent de sang Bos taurus, les productions laitières par lactation ont été 2,6, 2,4 et 2,2 fois plus élevées que celles des bovins indigènes dans les zones climatiques des Hauts-Plateaux, Tropicale Humide et Sèche et Semi-aride, respectivement; la durée de la lactation a augmenté de 1,2, 1,2 et 1,9 mois dans les susdites zones climatiques, respectivement; l'intervalle entre mises bas et l'âge au premier vêlage ont été, respectivement, 0,8 et 0,9 fois plus bas. De même, les animaux croisés à 50 pour cent de sang Bos taurus ont eu des productions laitières, sur la durée de leur vie, et un nombre total de lactations 1,8 et 1,2 fois plus élevés, respectivement. Bien que le croisement suppose affronter des défis tels qu'une meilleure infrastructure ou une plus grande demande en soins sanitaires, son usage comporte de nombreux avantages, parmi lesquels une majeure productivité par animal, un revenu plus élevé pour les familles et l'approvisionnement en aliments de grande valeur. Ainsi, le croisement continuera certainement à être un outil important d'amélioration du bétail sous les Tropiques, où les éleveurs peuvent fournir les conditions adéquates d'élevage pour maintenir des animaux à forts besoins et s'assurer ainsi l'accès au marché du lait.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharya, R.M. 1970. Cross-breeding of Zebu cattle with exotic breeds for milk production. Indian J. Anim. Sci. 40: 110119.Google Scholar
Ahlawat, S.P.S. & Singh, P.K. 2005. Conservation and improvement of Indian cattle breeds. VIII National Conference on Animal Genetics and Breeding, Indian Society of Animal Genetics and Animal Breeding, Mathrua, India, 8–10 March 2005.Google Scholar
Al-Amin, M. & Nahar, A. 2007. Productive and reproductive performance of non-descript (local) and crossbred dairy cows in coastal area of Bangladesh. Asian J. Anim. Vet. Adv. 2(1): 4649.Google Scholar
Alba, J. & Kennedy, B.W. 1985. Milk production in the Latin American milking Criollo and its crosses with the Jersey. Anim. Prod. 41: 143150.Google Scholar
Alexander, G.I. 1986. Australia's tropical dairy breed. Ag China Conference, Guangzhou, China, 1986, P. 402–406.Google Scholar
Amble, V.N. & Jain, J.P. 1967. Comparative performance of different grades of crossbred cows on military farms in India. J. Dairy Sci. 50(10): 16951702.Google Scholar
Ansell, R.H. 1985. Cattle breeding in the tropics. Wild Anim. Rev. 54: 3038.Google Scholar
Ashraf, A., Islam, S.S., Islam, A.B.M.M. & Ali, S.Z. 2000. A study of some economic traits of indigenous cattle and their crossbreeds in southern Bangladesh. Asian-Aust. J. Anim. Sci. 13(9): 11891192.Google Scholar
BAIF. 2011a. Central Research Station: technologies for small farmers. BAIF fact sheet 2/2011. BAIF, Pune, India.Google Scholar
BAIF. 2011b. Dairy husbandry for sustainable livelihood. BAIF fact sheet 3/2011. BAIF, Pune, India.Google Scholar
Bala, A.K. & Nagarcenkar, R. 1981. Evaluation of different cattle breed groups in hot humid tropics. Karnal, India, NDRI. Cited in Cunningham, E.P. and Syrstad, O., 1987 (Ph.D. project).Google Scholar
Bayemi, P.H., Bryant, M.J., Perera, B.M.A.O., Mbanya, J.N., Cavestany, D. & Webb, E.C. 2005. Milk production in Cameroon: a review. Livestock Research for Rural Development. Vol. 17, Art. #60. Retrieved 18 January 2010 (available at http://www.lrrd.org/lrrd17/6/baye17060.htm).Google Scholar
Bhowmik, P., Sirohi, S. & Dhaka, J.P. 2006. Gains from crossbreeding of dairy cattle in the North East: micro evidence from Tripura. Indian J. Agr. Econ. 61(3): 305313.Google Scholar
Bourdon, R. 2000. Understanding animal breeding, 2nd edition. Prentice-Hall Inc., Upper Saddle Valley River, New Jersey.Google Scholar
Buvanendran, V. 1974. Crossbreeding experiments of Jersey with Indian Zebu breeds. XIXth International Dairy Congress, New Delhi, Vol. I. E. 55. Cited in Cunningham, E.P. and Syrstad, O., 1987.Google Scholar
Buvanendran, V. & Mahadevan, P. 1975. Crossbreeding for milk production in Sri Lanka. Wild Anim. Rev. 15: 713.Google Scholar
Cardoso, V.L. & Vercesi Filho, A.E. 2006. Alternative crossbreeding strategies for dairy cattle production in tropical circumstances. Proceedings of 8th World Congress on Genetics Applied to Livestock Production, 13–18 August 2006, Belo Horizonte, Brazil.Google Scholar
Cerutti, F., Alvarez, J.C. & Rizzi, R. 2006. Development of the Carora breed. Proceedings of 8th World Congress on Genetics Applied to Livestock Production, 13–18 August 2006, Belo Horizonte, Brazil.Google Scholar
Chacko, C.T. 2005. Development of the Sunandini cattle breed in India. In Ojango, J.M., Malmfors, B. and Okeyo, A.M., eds. Animal genetics training Resource, Version 2, 2006. International Livestock Research Institute, Nairobi, Kenya and Swedish University of Agricultural Sciences, Uppsala, Sweden.Google Scholar
Chagunda, M.G.G. 2002. The importance of a national breeding policy – case for the Malawian dairy industry. In Ojango, J.M., Malmfors, B. and Okeyo, A.M., eds. Animal genetics training resource, Version 2, 2006. International Livestock Research Institute, Nairobi, Kenya and Swedish University of Agricultural Sciences, Uppsala, Sweden.Google Scholar
Chambers, F. 2006. Status of Rare Breeds of Domestic Farm Livestock in Australia. Official Publication of Rare Breeds Trust of Australia (available at http://www.rbta.org/Pdf%20Files/RBTA%20%20Breeds%20Status%20Report%202006.pdf).Google Scholar
Chantalakhana, C. 1998. Role of exotic breeds in dairy and beef improvement in Asia. Proceedings of 6th World Congress on Genetics Applied to Livestock Production, 11–16 January 1998, Volume 25, 213–222, Armidale, Australia.Google Scholar
Cunningham, E.P. 1981. Selection and crossbreeding strategies in adverse environments. FAO Anim. Prod. Health Paper No. 24, 284–293, Rome, Italy.Google Scholar
Cunningham, E.P. 1999. Recent developments in biotechnology as they relate to animal genetic resources for food and agriculture. FAO Background Study Paper No. 10, Rome, Italy.Google Scholar
Cunningham, E.P. & Syrstad, O. 1987. Crossbreeding Bos indicus and Bos taurus for milk production in the tropics. FAO Anim. Prod. Health Paper No. 68, Rome, Italy.Google Scholar
Dekkers, J.C.M. 2007. Marker-assisted selection for commercial crossbred performance. J. Anim. Sci. 85: 21042114.Google Scholar
Demeke, S., Neser, F.W.C., Schoeman, S.J. 2004a. Estimates of genetic parameters for Boran, Friesian, and crosses of Friesian and Jersey with the Boran cattle in the tropical highlands of Ethiopia: reproduction traits. J. Anim. Breed. Genet. 121: 5765.Google Scholar
Demeke, S., Neser, F.W.C., Schoeman, S.J. 2004b. Estimates of genetic parameters for Boran, Friesian, and crosses of Friesian and Jersey with the Boran cattle in the tropical highlands of Ethiopia: milk production traits and cow weight. J. Anim. Breed. Genet. 121: 163175.CrossRefGoogle Scholar
Dhara, K.C., Ray, N. & Sinha, R. 2006. Factors affecting production of F1 crossbred dairy cattle in West Bengal. Livestock Research for Rural Development. Volume 18, Article #51. Retrieved 18 January 2010 (available at http://www.lrrd.org/lrrd18/4/dhar18051.htm).Google Scholar
Gaur, G.K., Garg, R.C. & Singh, K. 2005. Experiences of crossbreeding cattle in India. VIII National Conference on Animal Genetics and Breeding, Indian Society of Animal Genetics and Animal Breeding, Mathrua, India, 8–10 March 2005.Google Scholar
Girolando Associação Brasileira Dos Criadores de Girolando. 2005. Performance (available at http://www.girolando.com.br/site/ogirolando/performance.php).Google Scholar
Goshu, G. 2005. Breeding efficiency, lifetime lactation and calving performance of Friesian-Boran crossbred cows at Cheffa farm, Ethiopia. Livestock Research for Rural Development. Volume 17, Article #73. Retrieved 18 January 2010 (available at http://www.lrrd.org/lrrd17/7/gosh17073.htm).Google Scholar
Gregory, K.E. & Trail, J.C.M. 1981. Rotation crossbreeding with Sahiwal and Ayrshire cattle in the tropics. J. Dairy Sci. 64: 19781984.Google Scholar
Haile, A., Joshi, B.K., Ayalew, W., Tegegne, A. & Singh, A. 2007. Economic comparison of Ethiopian Boran cattle and their crosses with Holstein Friesian in central Ethiopia. Ethiopian J. Anim. Prod. 7(1): 7787.Google Scholar
Hansen, P.J. 2006. Realizing the promise of IVF in cattle – an overview. Theriogenology 65: 119125.Google Scholar
Hayes, B.J., Bowman, P.J., Chamberlain, A.J. & Goddard, M.E. 2009. Invited review: genomic selection in dairy cattle: progress and challenges. J. Dairy Sci. 92: 433443.Google Scholar
Hayman, R.H. 1974. The development of the Australian milking Zebu. Wild Anim. Rev. 11: 3135.Google Scholar
Hemalatha, B., Prashanth, V.R.N. & Reddy, Y.V.R. 2003. Economics of milk production of different breeds of bovines in Ahmednagar district of Maharashtra. Quoted in Singh, A., 2005.Google Scholar
Ibáñez-Escriche, N., Fernando, R.L., Toosi, A. & Dekkers, J.C.M. 2009. Genomic selection of purebreds for crossbred performance. Genet. Sel. Evol. 41: 12.Google Scholar
Islam, N.M., Rahman, M.M. & Faruque, S. 2002. Reproductive performance of different crossbred and indigenous dairy cattle under small holder farming condition in Bangladesh. Online J. Biol. Sci. 2(4): 205207.Google Scholar
Kahi, A.K. 2002. Choice of genetic types for specific production environments and production systems. In Ojango, J.M., Malmfors, B. & Okeyo, A.M., eds. Animal genetics training resource, Version 2, 2006. International Livestock Research Institute, Nairobi, Kenya and Swedish University of Agricultural Sciences, Uppsala, Sweden.Google Scholar
Kahi, A.K., Nitter, G., Thorpe, W. & Gall, C.F. 2000. Crossbreeding for dairy production in the lowland tropics of Kenya: II. Prediction of performance of alternative crossbreeding strategies. Livest. Prod. Sci. 63: 5563.Google Scholar
Katpatal, B.G. 1977. Dairy cattle crossbreeding in India. Wild Anim. Rev. 22: 1521.Google Scholar
Katyega, P.M.J. 1987. Mpwapwa cattle of Tanzania. FAO/UNDP Anim. Genet. Resour. Inform. Bull. 6: 2326.Google Scholar
Kimenye, D. 1978. Milk production of Ayrshire and its crossbreds with Sahiwal at Machakos and Ngong Veterinary Farms, Kenya. Egerton Coll. Agric. Bull. 2(2): 4447.Google Scholar
King, J.M., Parsons, D.J., Turnpenny, J.R., Nyangaga, J., Bakari, P. & Wathes, C.M. 2006. Modelling energy metabolism of Friesians in Kenya smallholdings shows how heat stress and energy deficit constrain milk yield and cow replacement rate. Anim. Sci. 82: 705716.Google Scholar
Kiwuwa, G.H., Trail, J.C.M., Kurtu, M.Y., Worku, G., Anderson, F. & Durkin, J. 1983. Crossbred dairy cattle productivity in Arsi Region, Ethiopia. ILCA Research Report 11, International Livestock Centre for Africa.Google Scholar
Knudsen, P.P. & Sohael, A.S. 1970. The Vom herd: a study of the performance of a mixed Friesian/Zebu herd in a tropical environment. Trop. Agric. (Trinidad) 47: 189203.Google Scholar
Kosgey, I.S., Kahi, A.K. & Van Arendonk, J.A.M. 2005. Evaluation of closed adult nucleus multiple ovulation and embryo transfer and conventional progeny testing breeding schemes for milk production in tropical crossbred cattle. J. Dairy Sci. 88: 15821594.Google Scholar
Kumar, A., Birthal, P.S. & Joshi, P.K. 2003. Research on crossbreeding in cattle: an analysis of its economic and social impact in India. Agric. Econ. Res. Rev. 16(2): 91102.Google Scholar
Mackinnon, M.J., Thorpe, W. & Barker, R.L. 1996. Sources of genetic variation for milk production in a crossbred herd in the tropics. Anim. Sci. 62: 516.Google Scholar
Madalena, F.E. 1981. Crossbreeding strategies for dairy cattle in Brazil. Wild Anim. Rev. 38: 2330.Google Scholar
Madalena, F.E., Lemos, A.M., Teodoro, R.L., Barbosa, R.T. & Monteiro, J.B. 1990. Dairy production and reproduction in Holstein-Friesian and Guzera crosses. J. Dairy Sci. 73: 18721886.Google Scholar
Madalena, F.E., Peixoto, M.G.C.D. & Gibson, J. 2012. Dairy cattle genetics and its applications in Brazil. Livestock Research for Rural Development. Volume 24, Article #97. Retrieved 10 August 2012 (available at http://www.lrrd.org/lrrd24/6/made24097.htm).Google Scholar
Majid, M.A., Talukder, A.I. & Zahiruddin, M. 1996. Productive performance of pure breeds, F1, F2 and F3 generations cows raised on the Central Cattle Breeding and Dairy farm of Bangladesh. Asian-Aust. J. Anim. Sci. 9: 461464.Google Scholar
Mapletoft, R.J. & Hasler, J.F. 2005. Assisted reproductive technologies in cattle: a review. Rev. Sci. Tech. Off. Int. Epiz. 24(1): 393403.Google Scholar
Mason, I.L. 1974. Maintaining crossbred populations of dairy cattle in the tropics. Wild Anim. Rev. 11: 3643.Google Scholar
Mason, I.L. & Buvanendran, V. 1982. Breeding plans for ruminant livestock in the tropics. FAO Animal Production and Health Paper 34, Rome, Italy.Google Scholar
Matharu, R.S. & Gill, G.S. 1981. Evaluation of different grades of Holstein-Friesian × Sahiwal crosses on the basis of lifetime production and reproduction efficiency. Indian J. Dairy Sci. 24: 1620.Google Scholar
McDowell, R.E. 1985. Crossbreeding in tropical areas with emphasis on milk, health, and fitness. J. Dairy Sci. 68: 24182435.Google Scholar
McDowell, R.E., Wilk, J.C. & Talbott, C.W. 1996. Economic viability of crosses of Bos taurus and Bos indicus for dairying in warm climates. J. Dairy Sci. 79: 12911303.Google Scholar
Meat and Livestock Australia 2006. Handbook of Australian livestock, 5th edition. Meat and Livestock Australia Limited (available at http://www.mla.com.au/NR/rdonlyres/DC211937-3533-4EC8-98C3-5D2836A89C3B/0/HandbookofAustraianlivestock.pdf).Google Scholar
Miazi, O.F., Hossain, E. & Hassan, M.M. 2007. Productive and reproductive performance of crossbred and indigenous dairy cows under rural conditions in Comilla, Bangladesh. Univ. J. Zool. Rajshahi Univ. 26: 6770.Google Scholar
Olutogun, O., Yode-Owolade, A. & Abdullah, A.R. 2006. Comparative analysis of lactation traits of Holstein-Friesian White-Fulani Zebu and their F1 crossbred cows in Nigeria. Proceedings of 8th World Congress on Genetics Applied to Livestock Production, 13–18 August 2006, Belo Horizonte, Brazil.Google Scholar
Patil, B.R. & Udo, H.M.J. 1997. The impact of crossbred cows at farm level in mixed farming systems in Gujarat, India. Asian-Aust. J. Anim. Sci. 10(6): 621628.Google Scholar
Philipsson, J., Rege, J.E.O. & Okeyo, A.M. 2006. Sustainable breeding programs for tropical farming systemsin. In Ojango, J.M., Malmfors, B. and Okeyo, A.M., eds. Animal genetics training resource, Version 2, 2006. International Livestock Research Institute, Nairobi, Kenya and Swedish University of Agricultural Sciences, Uppsala, Sweden.Google Scholar
Policy Note. 2007. Dairy Sector Development in Sub-saharan Africa. Retrieved from www.alive-online.org Google Scholar
Rahman, M., Islam, R. & Rahman, M.M. 2007. Estimation of genetic Parameters for Economic Traits in Dairy Cattle of Bangladesh. Asian J. Anim. Med. Adv., 2(1): 914.Google Scholar
Rege, J.E.O. 1998. Utilization of exotic germplasm for milk production in the tropics. In: Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, 11–16 January 1998, Armidale, NSW, Australia.Google Scholar
Roschinsky, R., Sölkner, J., Puskur, R., Wurzinger, M. 2012. Crossbreeding as innovation for dairy stock keepers in the tropics – case study Amhara Region, Ethiopia. Poster published at symposium: “Festsymposium 140 Jahre Universität für Bodenkultur Wien. Quo vadis, Universitäten?”, Vienna, 2012.Google Scholar
Roso, V.M., Schenkel, F.S., Miller, S.P. & Wilton, J.W. 2005. Additive, dominance, and epistatic loss effects on preweaning weight gain of crossbred beef cattle from different Bos taurus breeds. J. Anim. Sci. 83: 17801787.Google Scholar
Rutledge, J.J. 2001. Greek temples, tropical kine and recombination load. Livest. Prod. Sci. 68: 171179.Google Scholar
Shem, M.N. 2007. The dairy industry development in Tanzania: Lessons from the past for a better tomorrow. In: 5th National dairy development conference, building sustainable dairy chains in Tanzania, Arusha, Tanzania.Google Scholar
Shem, M.N. & Mdoe, N.S.Y. 2003. Dairy production and poverty alleviation in Tanzania: A historical perspective. Paper presented during the Annual Conference of Society for Animal Science, December 2003, Arusha, Tanzania.Google Scholar
Singh, A. 2005. Crossbreeding of cattle for increasing milk production in India: a review. Indian J. Anim. Sci. 75(3): 383390.Google Scholar
Sohael, A.S. 1984. Milk production potential of cattle on the Jos Plateau. Nigeria Livest. Earner 4(3): 1314.Google Scholar
Sölkner, J., Nakimbugwe, H. & Valle-Zarate, A. 1998. Analysis of determinants for success and failure of village breeding programs. In: Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, vol. 25, 11–16 January 1998, Armidale, NSW, Australia, pp. 273–280.Google Scholar
Stonaker, H.H. 1953. Estimates of genetic changes in an Indian herd of red Sindhi dairy cattle. J. Dairy Sci. 36: 688697.Google Scholar
Swan, A.A. & Kinghorn, B.P. 1992. Evaluation and exploitation of crossbreeding in dairy cattle. J. Dairy Sci. 75: 624639.Google Scholar
Syrstad, O. 1987. Dairy cattle crossbreeding in the tropics: choice of crossbreeding ctrategy. Trop. Anim. Health and Prod. 28: 223229.CrossRefGoogle Scholar
Syrstad, O. 1988. Crossbreeding for increased milk production in the tropics. Norw. Agric. Sci. 2: 179185.Google Scholar
Syrstad, O. 1989. Dairy cattle cross-breeding in the tropics: performance of secondary cross-bred populations. Livest. Prod. Sci. 23: 97106.Google Scholar
Syrstad, O. & Ruane, J. 1998. Prospects and strategies for genetic improvement of the dairy potential of tropical cattle by selection. Trop. Anim. Health Prod. 30: 257268.Google Scholar
Tadesse, M. & Dessie, T. 2003. Milk production performance of Zebu, Holstein Friesian and their crosses in Ethiopia. Livestock Research for Rural Development 3 (15) (available at http://www.lrrd.org/lrrd15/3/Tade153.htm).Google Scholar
Tadesse, M., Dessie, T., Tessema, G., Degefa, T. & Gojam, Y. 2006. Study on age at first calving, calving interval and breeding efficiency of Bos taurus, Bos indicus and their crosses in the highlands of Ethiopia. Ethiopian J. Anim. Prod. 6(2): 116.Google Scholar
Thorpe, W., Morris, C.A. & Kang'ethe, P. 1994. Crossbreeding of Ayrshire, Brown Swiss, and Sahiwal Cattle for annual and lifetime milk yield in the lowland tropics of Kenya. J. Dairy Sci. 77: 24152427.Google Scholar
Trail, J.C.M. & Gregory, K.E. 1981. Sahiwal cattle. An evaluation of their potential contribution to milk and beef production in Africa. ILCA Monograph 3, International Livestock Centre for Africa.Google Scholar
Van der Werf, J. & Marshall, K. 2003. Combining gene-based methods and reproductive technologies to enhance genetic improvement of livestock in developing countries. Book for Extended Synopses. FAO/IAEA International symposium on application of gene based technologies for improving animal production and health in developing countries, 6–10 October 2003, Vienna, Austria.Google Scholar
VanRaden, P.M. & Sanders, A.H. 2003. Economic merit of crossbred and purebred US dairy cattle. J. Dairy Sci., 86: 10361044.Google Scholar
Velazquez, M.A. 2008. Assisted reproductive technologies in cattle: applications in livestock production, biomedical research and conservation biology. Annu. Rev. Biomed. Sci. 10: 3662.Google Scholar
Wheeler, M.B., Rutledge, J.J., Fischer-Brown, A., VanEtten, T., Malusky, S. & Beebe, D.J. 2006. Application of sexed semen technology to in vitro embryo production in cattle. Theriogenology 65: 219227.Google Scholar
Wint, W. & Robinson, T. 2007. Gridded Livestock of the World. FAO, Rome, Italy (available at http://www.fao.org/docrep/010/a1259e/a1259e00.htm).Google Scholar
World Book, Encyclopedia and Learning Resources. 2009. Available at http://www.worldbook.com/wb/Students?content_spotlight/climates/about_climates Google Scholar
Wurzinger, M., Willam, A., Delgado, J., Nürnberg, M., Valle Zarate, A., Stemmer, A., Ugarte, G. & Sölkner, J. 2008. Design of a village breeding programme for a llama population in the High Andes of Bolivia. Anim. Breed. Genet. 125, 5: 311319.Google Scholar
Supplementary material: File

Galukande Supplementary Material

Tables 1-5

Download Galukande Supplementary Material(File)
File 1.4 MB