Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T18:10:00.187Z Has data issue: false hasContentIssue false

Blood protein polymorphism and genetic diversity in locally adapted Muscovy duck (Cairina moschata) in Nigeria

Published online by Cambridge University Press:  28 January 2015

A.O. Oguntunji*
Affiliation:
Department of Animal Science and Fisheries Management, Bowen University, Iwo, Osun State, Nigeria
K.L. Ayorinde
Affiliation:
Department of Animal Production, University of Ilorin, Ilorin, Kwara State, Nigeria
*
Correspondence to: A.O. Oguntunji, Department of Animal Science and Fisheries Management, Bowen University, Iwo, Osun State, Nigeria. email: [email protected]
Get access

Summary

Characterization and genetic diversities among members of a species are fundamental to their improvement and conservation. This study was conducted to characterize and estimate genetic diversity in the ecotypes of the locally adapted Muscovy duck in Nigeria using blood proteins (haemoglobin, transferrin and albumin) and enzyme (carbonic anhydrase) markers. Blood samples collected from 20, 40 and 20 adult Muscovy ducks sampled randomly from the Rain Forest, Derived Savanna and Guinea Savanna ecotypes, respectively, were typed for blood proteins and enzyme polymorphism with cellulose acetate paper. Genetic variability in the studied population was accessed using heterozygosity (H), effective number of allele (ne) and polymorphism (percent P). All the 13 allelic variants expressed at the four loci were expressed in the Derived Savanna ecotype but 12 each in the Rain Forest and Guinea Savanna ecotypes. Results showed that all the four loci were polymorphic (100 percent) and the estimated heterozygosity among them was similar (0.424–0.481). Similarity in the estimated genetic variability parameters among ecotypes indicate that the sub-populations understudy was under similar evolutionary forces and there were no appreciable differences among them.

Résumé

La caractérisation et les diversités génétiques parmi les members d'une spécie sont fondamentales pour leurs ameliorations afin de les conservation. Cet etude a ete sait pour pourvoir caracterises et estimer la diversite genetique dans les ecotypes des carnards locaux muscovys au Nigeria en utilisant le sang protein(Haemoglobine, le transferine et l'albumin) et l ’ enzyme (L'anhydrase carbonique) marquers. Les echantillions saguines ramasses de 20, 40 et 20 adultes des carnards Muscovy ont ete pris respectivement par hazard des ecotypes de la foret, de la savvane derive, et de la savanne guinea. Ils ont ete tapes pour les proteins sanguine et l’ enzymes polymorphism eaves les papierrs cellulose. La variable genetique de la population etudie a ete evalue en utilisant heterozygosite (H) les nombres des alleles (ne) effectifs et la polymorphisme (%P0. Tous les treize variants alleliques montres dans les quatre locis sout aussi montres dans l'ecotype de la savanne derive mais les douze dans la foret et daus les ecotype de la guinea savanne. Les resultants montret que tous les quatre locis sont polymorphiques (100%0 et l'heterozygosite estimee parmi eux etait semblable (0.424–0.481). La similarite de ĺa parameter variable de la genetique estmee parmie les ecotypes indique que les sousopopulations etudiees etaient similaires aux forces evolutionaire et il n’ y avait pas de beaucoup difference parmi eux.

Resumen

La caracterización y las diversidades genéticas entre miembros de una especie son fundamentales para su mejora y conservación. Este estudio fue llevado a cabo con el fin de caracterizar y estimar la diversidad genética en los ecotipos del pato mudo localmente adaptado en Nigeria, usando proteínas sanguíneas (hemoglobina, transferrina y albúmina) y marcadores enzimáticos (anhidrasa carbónica). Las muestras de sangre se tomaron en 20, 40 y 20 patos mudos adultos recogidos al azar de los ecotipos Selva, Sabana Derivada y Sabana de Guinea, respectivamente. En las muestras de sangre, se determinaron las proteínas sanguíneas y el polimorfismo enzimático con papel de acetato de celulosa. La variabilidad genética de la población estudiada fue evaluada en base a la heterocigosis (H), el número efectivo de alelos (ne) y el polimorfismo (P, en tanto por ciento). Las trece variantes alélicas asociadas a los cuatro loci se expresaron en el ecotipo Sabana Derivada mientras que en los ecotipos Selva y Sabana de Guinea sólo se expresaron doce. Los resultados mostraron que los cuatro loci fueron polimórficos (100 por cien) y que la heterocigosis estimada fue similar entre ellos (0.424–0.481). La similitud entre ecotipos en las medidas de estimación de la variabilidad genética indica que las subpoblaciones objeto de estudio se hallaban bajo similares fuerzas evolutivas y que no existían diferencias apreciables entre ellas.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmadi, A.K., Rahimi, G., Vafaei, A. & Sayyazadeh, H. 2007. Microsatellite analysis of genetic diversity in Pekin (Anas platyrhynchos) and Muscovy (Cairina moschata) duck populations. International Journal of Poultry Science 6(5): 378382.Google Scholar
Akinyemi, M.O. & Salako, A.E. 2012. Genetic relationship among Nigerian indigenous sheep population using blood protein polymorphism. Agricultural Science and Technology 4(2): 107112.Google Scholar
Arora, R., Bhatia, S., Mishra, B.P. & Joshi, B.K. 2011. Population structure in Indian sheep ascertained using microsatellite information. Animal Genetics 42: 242250.Google Scholar
Blench, R.M. 1995. A history of domestic animals in northeastern Nigeria. Cahiers des Sciences Humaines 31(1): 181237.Google Scholar
Boujenane, I., Ouragh, L., Benlamlih, S., Aarab, B., Miftah, J. & Oumrhar, H. 2008. Variation at postalbumin, transferrin and haemoglobin proteins in Moroccan local sheep. Small Ruminant Research 79: 113117.CrossRefGoogle Scholar
Ceriotti, G., Caroli, A., Rizzi, R. & Crimella, C. 2003. Genetic relationships among taurine (Bos taurus) and Zebu (Bos indicus) populations as revealed by blood groups and blood proteins. Journal of Animal Breeding and Genetics 120: 5767.Google Scholar
Cooke, F., Parkin, D.T. & Rockwell, R.F. 1988. Evidence of former allopatry of the two color phases of Lesser Snow Geese (Chen caerulescens caerulescens) . The Auk 105: 467479.Google Scholar
Duru, S., Akpa, G.N., Saidu, L., Olugbemi, T.S. & Jokthan, G.E. 2006. A preliminary study on duck management under peri-urban system. Livestock Research for Rural Development 18(3), Article #36. Retrieved 8 June 2013 (available at http://www.lrrd.org/lrrd18/3/duru18036.htm).Google Scholar
FAO (Food and Agricultural Organisation). 1999. Report of expert consultation on water fowl production in Africa, 12 pp.Google Scholar
Hui-Fang, L., Wei-Tao, S., Jing-Ting, S., Kuan-Wei, C., Wen-Qi, Z., Wei, H. & Wen-Juan, X. 2010. Genetic diversity and population structure of 10 Chinese indigenous egg-type breeds assessed by microsatellite polymorphism. Journal of Genetics 89(1): 6572.Google Scholar
Ibeagha-Awemu, E.M. & Erhardt, G. 2004. Genetic variations between African and German sheep breeds and descriptions of new variant of vitamin D-binding protein. Small Ruminant Research 55: 3343.CrossRefGoogle Scholar
Kuznetsov, S.B., Baranyuk, V.V. & Takekawa, J.Y. 1998. Genetic differentiation between wintering populations of Lesser Snow Geese nesting on Wrangel Island. The Auk 115(4): 10531057.Google Scholar
Lee, S.L., Mukherjee, T.K., Agamuthu, P. & Panandam, J.M. 1995. Biochemical polymorphism studies in breeds of wool-sheep, hair-sheep and their hybrids in Malaysia. Asian–Australian Journal of Animal Science 8(4): 357364.Google Scholar
Mariante, A.S. & McManus, C. 2004. Conservação de bovinos de raças naturalizadas, visando a sua inserção em sistemas de produção. In Proceedings of the 41st Reunião Anual da Sociedade Brasileira de Zootecnia, Campo Grande, Brazil, pp. 335–342.Google Scholar
NBS 2012. National Bureau of Statistics/Federal Ministry of Agriculture and Rural Development Collaborative Survey on National Agriculture Sample Survey (NASS), 2010/2011-Draft Report. May, 2012.Google Scholar
Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583590.CrossRefGoogle ScholarPubMed
Nur, H., Yusrizal, Y. & Manin, F. 2012. Study of blood polymorphism of Kerinci duck. International Journal of Poultry Science 11(10): 641643.Google Scholar
Nyamsamba, D., Nomura, K., Nozawa, K., Yokohama, M., Zagdsuren, K.Y. & Amano, T. 2003. Genetic relationship among Mongolian native goat populations estimated by blood protein polymorphism. Small Ruminant Research (47): 171181.Google Scholar
Oguntunji, A.O. 2013. Phenotypic and biochemical characterization of the Nigerian Muscovy ducks. Ph. D. Dissertation. Bowen University. Iwo. Osun State. Nigeria. 333 pp.Google Scholar
Oguntunji, A.O., Aderemi, F.A., Lawal, T.E. & Alabi, O.M. 2008. The influence of seasonal variation on performance of a commercial laying strain in a derived savanna environment in Nigeria. Nigerian Poultry Science Journal 5(2): 7582.Google Scholar
Ordás, J.G. & San Primitivo, F. 1986. Genetic variations in blood proteins within and between Spanish dairy sheep breeds. Animal Genetics 17: 255266.CrossRefGoogle ScholarPubMed
Paulauskas, A., Tubelyte, V., Baublys, V. & Sruoga, A. 2009. Genetic differentiation of Dabbling ducks (Anseriformes: Anas) populations from Palaearctic in time and space. Proceedings of the Latvian Academy of Sciences. Section B. 63(1/2)(660/661): 1420.Google Scholar
Rege, J.E.O. & Okeyo, A.M. 2006. Improving our knowledge of tropical indigenous animal genetic resourse.Version II. Module 2. In Ojango, J.M., Mamfors, B. & Okeyo, A.M., eds. Animal genetic training resource version 2, 2006. Nairobi, Kenya, International Livestock Research In Statute and Uppsala, Sweden, Swedish University of Agricultural Science.Google Scholar
Salako, A.E. & Ige, A.O. 2006. Haemoglobin polymorphisms in the Nigerian Indigenous chickens. Journal of Animal and Veterinary Advances 5(11): 897899.Google Scholar
Salako, A.E., Ijadunola, T.O. & Aregbesola, Y.O. 2007. Haemoglobin polymorphism in Nigerian indigenous small ruminant populations – preliminary investigation. African Journal of Biotechnology 6(22): 26362638.Google Scholar
Sanjalj, S., Hemant, T. & Robert, C.E. 2000. On estimating the heterozygosity and polymorphism information content value. Theoretical Population Biology 57: 265271.Google Scholar
Takezaki, N. & Nei, M. 1996. Genetic distances and reconstruction of phylogenetic tree from microsatellites DNA. Genetics 144: 389399.Google Scholar
Ugur, Z., Ismaila, K., Vahdettin, S. & Ibrahim, A. 2006. Haemoglobin polymorphism in Chuckar (Alectoris chuckar) and Pheasant (Phasianus colchicus). Journal of Animal and Veterinary Advances 5(11): 894896.Google Scholar
Wu, F., Huang, Y., Ma, Y., Hu, S., Hao, J. & Li, N. 2009. Evaluation of genetic diversity and relationships and between two breeds of duck based on microsatellite markers. Progress in Natural Science 19: 15811586.Google Scholar
Wu, Y., Liu, X., Hou, S. & Huang, W. 2008. Study on genetic diversity of six duck populations with microsatellite DNA. Asian–Australian Journal of Animal Science 21(6): 776783.Google Scholar
Yakubu, A. 2011. Discriminant analysis of sexual dimorphism in morphological traits of African Muscovy ducks. Archivos de Zootecnia 60: 18.Google Scholar
Yakubu, A. & Aya, V.E. 2012. Analysis of genetic variation in normal feathered, naked neck and Fulani-ecotype Nigeria indigenous chickens based on haemoglobin polymorphism. Biotechnology in Animal Husbandry 28(2): 377384.Google Scholar
Zahrane, K., Boulbaba, R., Brahim, H., Lazher, Z. & Sami, S. 2011. Blood protein polymorphism in three sheep breeds from the south of Tunisia. Research Opinions in Animal and Veterinary Sciences 1(2): 6973.Google Scholar