Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T12:09:59.511Z Has data issue: false hasContentIssue false

RESIDENTIAL HISTORIES OF THE HUMAN SACRIFICES AT THE MOON PYRAMID, TEOTIHUACAN

Evidence from oxygen and strontium isotopes

Published online by Cambridge University Press:  14 August 2007

Abstract

To investigate geographic origins of the sacrificial Burials 2–5 from the Moon Pyramid at Teotihuacan and to reconstruct changes in residence since their childhoods, we analyzed tooth enamel for oxygen- and strontium-isotope ratios and bone just for oxygen-isotope ratios. The combination of these analytical techniques involves both climatic and geological variables, therefore enhancing resolution of geographic identification. Most of the sacrificed individuals appear to have been born in a foreign location. These regions probably include other areas within the Basin of Mexico and the central highlands, as well as the Gulf Coast and the Sierra Madre del Sur. Other possible regions of origin are the southern highlands, the Motagua Valley, and the Maya Lowlands. There is considerable overlap in the oxygen-isotope ratios between the Moon Pyramid and Feathered Serpent Pyramid victims, but each structure contains a group of isotopically distinct individuals. The Moon Pyramid sacrifices include some individuals with high oxygen-isotope ratios, possibly indicating the Gulf Coast or Maya Lowlands, whereas the Feathered Serpent Pyramid contains a distinct group with very low oxygen-isotope ratios, possibly indicating Oaxaca, Michoacan, or the coastal plain and piedmont of Guatemala. The sacrifices in the two pyramids also differ in their patterns of movement. Most of the Moon Pyramid victims appear to have arrived in the city recently, but the majority of those from the Feathered Serpent Pyramid had lived in Teotihuacan for a long time before their death.

Resumen

Las proporciones de isótopos de oxígeno y estroncio fueron medidas en el esmalte de dientes de todos los sacrificios humanos de la Pirámide de la Luna, Teotihuacan, para investigar sus orígenes geográficos. Las proporciones de isótopos de oxígeno fueron medidas en huesos de todos los mismos individuos para determinar si ellos se habían reubicado o no desde su niñez en Teotihuacan o alguna otra región. La combinación de estas técnicas analíticas provee una resolución mucho mayor para identificar orígenes posibles porque involucra un grupo más grande de variables ambientales, por ejemplo, las proporciones de isótopos de oxígeno caracterizan temperatura, altitud, precipitación y humedad, y las proporciones de isótopos de estroncio reflejan la geología. Todos los individuos sacrificados, con una posible excepción, parecen haber nacido en un lugar extranjero. Estas regiones probablemente incluyen otras áreas dentro de la cuenca de México y la Sierra Central, así como la Costa del Golfo y la Sierra Madre del Sur. Otras posibles regiones de origen son la Sierra Meridional, el Valle de Motagua y las Tierras Bajas Mayas. Hay una considerable superposición de las proporciones de isótopos de oxígeno entre las víctimas de la Pirámide de la Luna y las de la Pirámide de la Serpiente Emplumada, pero cada estructura contiene un grupo de individuos isotópicamente distintos. La Pirámide la Luna tiene un número de individuos con proporciones de isótopos de oxígeno mucho más altas, posiblemente indicativas de individuos de la Costa del Golfo o de las Tierras Bajas Mayas, mientras que la Pirámide la Serpiente Emplumada tiene un grupo distinto de individuos con proporciones de isótopos de oxígenos muy bajas, posiblemente indicativas de Oaxaca, Michoacan o la Llanura Costanera y el Pie de Monte de Guatemala. Los sacrificios en las dos pirámides también difieren en sus patrones de movimiento. La mayoría de los de la Pirámide de la Serpiente Emplumada habían vivido en Teotihuacan por largo tiempo antes de su muerte, mientras que la mayoría de las víctimas de la Pirámide la Luna parecen haber llegado a la ciudad recientemente desde el extranjero.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åberg, Gören 1998 The Use of Natural Strontium Isotopes as Tracers in Environmental Studies. Water, Air, and Soil Pollution 79:309322.10.1007/BF01100444Google Scholar
Agrinier, Pierre 1975 Mound 20, Mirador, Chiapas, Mexico. New World Archaeological Foundation Papers, No. 39. Brigham Young University, Provo, UT.Google Scholar
Ayliffe, Linda K., and Chivas, Allan R. 1990 Oxygen Isotope Composition of the Bone Phosphate of Australian Kangaroos: Potential as a Palaeoenvironmental Recorder. Geochimica et Cosmochimica Acta 54:26032609.10.1016/0016-7037(90)90246-HGoogle Scholar
Beck, Lane A., and Sievert, April K. 2005 Mortuary Pathways Leading to the Cenote at Chichén Itzá. In Interacting with the Dead: Perspectives on Mortuary Archaeology for the New Millennium, edited by Rakita, Gordon F.M., Buikstra, Jane E., Beck, Lane A., and Williams, Sloan R., pp. 290304. University Press of Florida, Gainesville.Google Scholar
Bentley, Alex Price, T. Douglas, Lüning, Jens, Gronenborn, Detlev, Wahl, Joachim, and Fullagar, Paul 2002 Prehistoric Migration in Europe: Strontium Isotopes in Early Neolithic Skeletons. Current Anthropology 43: 799804.10.1086/344373CrossRefGoogle Scholar
Bocherens, Hervé, Mashdour, Marjan, Billiou, Daniel, Pellé, Eric, and Mariotti, André 2001 A New Approach for Studying Prehistoric Herd Management in Arid Areas: Intra-tooth Isotopic Analyses of Archaeological Caprines from Iran. Earth and Planetary Science Letters 332:6774.Google Scholar
Bryant, J. Daniel, and Froelich, Philip N. 1995 A Model of Oxygen Isotope Fractionation in Body Water of Large Mammals. Geochimica et Cosmochimica Acta 59:45234537.10.1016/0016-7037(95)00250-4Google Scholar
Bryant, J. Daniel, Luz, Boaz, and Froelich, Philip N. 1994 Oxygen Isotopic Composition of Fossil Horse Tooth Phosphate as a Record of Continental Paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 107:303316.10.1016/0031-0182(94)90102-3CrossRefGoogle Scholar
Budd, Paul, Montgomery, Janet, Barriero, B., and Thomas, R.G. 2000 Differential Diagenesis of Strontium in Archaeological Human Dental Tissues. Applied Geochemistry 15:687694.10.1016/S0883-2927(99)00069-4CrossRefGoogle Scholar
Buikstra, Jane 2004. Los debates de los gobernantes mayas, una perspectiva bioarqueologica. Los Investigadores de la Cultura Maya 12:441457.Google Scholar
Buikstra, Jane E., Price, T. Douglas, Wright, Lori E., and Burton, James H. 2003 Tombs from the Copán Acropolis: A Life History Approach. In Understanding Early Classic Copan, edited by Bell, Ellen E., Canuto, Marcello A., and Sharer, Robert J., pp. 191212. University of Pennsylvania Museum of Archaeology and Anthropology, Philadelphia.Google Scholar
Cerling, Thure E, and Sharp, Zachary D. 1996 Stable Cargon and Oxygen Isotope Analysis of Fossil Tooth Enamel Using Laser Ablation. Palaeogeography, Palaeoclimatology, Palaeoecology 126:173186.10.1016/S0031-0182(96)00078-8Google Scholar
Clayton, Robert N., and Mayeda, Toshiko K. 1963 The Use of Bromine Pentafluoride in the Extraction of Oxygen from Oxides and Silicate for Isotopic Analysis. Geochimica et Cosmochimica Acta 27:4352.10.1016/0016-7037(63)90071-1Google Scholar
Comar, C., Russell, R.S., and Wasserman, R.H. 1957 Strontium-Calcium Movement from Soil to Man. Science 126:485496.10.1126/science.126.3272.485CrossRefGoogle ScholarPubMed
Coplen, Tyler B. 1994 Reporting of Stable Hydrogen, Carbon and Oxygen Isotopic Abundances. Pure and Applied Chemistry 66:271276.10.1351/pac199466020273Google Scholar
Crowson, Ronald A, Showers, William J., Wright, Ellen K., and Hoering, Thomas C. 1991 Preparation of Phosphate Samples for Isotopic Analysis. Analytical Chemistry 63:23972400.10.1021/ac00020a038CrossRefGoogle Scholar
D'Angela, D., and Longinelli, Anthony 1990 Oxygen Isotopes in Living Mammal's Bone Phosphate: Further Results. Chemical Geology 86:7582.Google Scholar
Daux, V., Lecuyer, C., Adam, F., Martineau, F., and Vimeaux, F. 2005 Oxygen Isotope Composition of Human Teeth and the Record of Climate Changes in France (Lorraine) during the Last 1700 Years. Climate Change 70:445464.10.1007/s10584-005-5385-6CrossRefGoogle Scholar
Duncan, William N. 2005 Understanding Veneration and Violation in the Archaeological Record. In Interacting with the Dead: Perspectives on Mortuary Archaeology for the New Millenium, edited by Rakita, Gordon F.M., Buikstra, Jane E., Beck, Lane A., and Williams, Sloan R., pp. 207227. University of Florida Press, Gainesville.Google Scholar
Dupras, Tosha L., and Schwarcz, Henry P. 2001 Strangers in a Strange Land: Stable Isotope Evidence for Human Migration in the Dakhleh Oasis, Egypt. Journal of Archaeological Science 28:11991208.10.1006/jasc.2001.0640Google Scholar
Elias, Robert W., Hirao, Y., and Patterson, Claire C. 1982 The Circumvention of the Natural Biopurification of Calcium along Nutrient Pathways by Atmospheric Inputs of Industrial Lead. Geochimica et Cosmochimica Acta 46:25612580.10.1016/0016-7037(82)90378-7Google Scholar
Ezzo, Joseph, Johnson, Clark M., and Price, T. Douglas 1997 Analytical Perspectives on Prehistoric Migration: A Case Study from East-Central Arizona. Journal of Archaeological Science 24:447466.10.1006/jasc.1996.0129Google Scholar
Faure, Gunter 1986 Principles of Isotope Geology. John Wiley, New York.Google Scholar
Faure, Gunter, and Powell, John L. 1972 Strontium Isotope Geology. Springer-Verlag, New York.10.1007/978-3-642-65367-4Google Scholar
Firsching, F. Henry 1961 Precipitation of Silver Phosphate from Homogeneous Solution. Analytical Chemistry 33:873887.10.1021/ac60175a018CrossRefGoogle Scholar
Fricke, Henry C., and O'Neil, James R. 1996 Inter- and Intra-tooth Variation in the Oxygen Isotope Composition of Mammalian Tooth Enamel Phosphate: Implications for Palaeoclimatological and Palaeobiological Research. Palaeogeography, Palaeoclimatology, Palaeoecology 126:9199.10.1016/S0031-0182(96)00072-7CrossRefGoogle Scholar
Fricke, Henry C., O'Neil, James R., and Lynnerup, Neils 1995 Oxygen Isotope Compostion of Human Tooth Enamel from Medieval Greenland: Linking Climate and Society. Geology 23:869872.10.1130/0091-7613(1995)023<0869:SROICO>2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Gadbury, C., Todd, L., Jahran, A.H, and Amundson, R. 2000 Spatial and Temporal Variations in the Isotopic Composition of Bison Tooth Enamel from the Early Holocene Hudson-Meng Bone Bed, Nebraska. Palaeogeography, Palaeoclimatology, Palaeoecology 151:7993.10.1016/S0031-0182(99)00151-0CrossRefGoogle Scholar
Hess, J., Bender, M.L., and Schilling, J.G. 1986 Evolution of the Ratio of Strontium-87 to Strontium-86 in Seawater from the Cretaceous to Present. Science 231:979984.10.1126/science.231.4741.979CrossRefGoogle ScholarPubMed
Hobson, Keith A. 1999 Tracing Origins and Migration of Wildlife Using Stable Isotopes: A Review. Oecologia 120:314326.10.1007/s004420050865Google Scholar
Hodell, David A., Quinn, Rhonda L., Brenner, Mark, and Kamenov, George 2004 Spatial Variation of Strontium Isotopes (87Sr/86Sr) in the Maya Region: A Tool for Tracking Ancient Human Migration. Journal of Archaeological Science 31:585601.10.1016/j.jas.2003.10.009Google Scholar
Huertas, Antonio D., Iacumin, Paola, Stenni, Barbara, Chillón, Begoña S., and Longinelli, Antonio 1995 Oxygen Isotope Variations of Phosphate in Mammalian Bone and Tooth Enamel. Geochimica et Cosmochimica Acta 59:42994305.10.1016/0016-7037(95)00286-9CrossRefGoogle Scholar
Kidder, Alfred V., Jennings, Jesse D., and Shook, Edwin M. 1946 Excavations at Kaminaljuyú, Guatamala. Publication 561. Carnegie Institution of Washington, DC.Google Scholar
Killingley, John S., and Lutcavage, Molly 1983 Loggerhead Turtle Movements Reconstructed from 18O and 16O Profiles from Commensal Barnacle Shells. Estuarine Coastal Shelf Science 16:345349.10.1016/0272-7714(83)90152-XGoogle Scholar
Koch, Paul L., Fisher, Daniel C., and Dettman, David 1989 Oxygen Isotope Variation in the Tusks of Extinct Proboscideans: A Measure of Season of Death and Seasonality. Geology 17:515519.10.1130/0091-7613(1989)017<0515:OIVITT>2.3.CO;2Google Scholar
Kohn, Matthew J. 1996 Predicting Animal δ18O: Accounting for Diet and Physiological Adaptation. Geochimica et Cosmochimica Acta 60:48114829.10.1016/S0016-7037(96)00240-2Google Scholar
Kohn, Matthew J., Schoeninger, Margaret J., and Barker, W.W. 1999 Altered States: Effects of Diagenesis on Fossil Tooth Chemistry. Geochimica et Cosmochimica Acta 63:27372747.10.1016/S0016-7037(99)00208-2Google Scholar
Kohn, Matthew J., Schoeninger, Margaret J., and Valley, John W. 1996 Herbivore Tooth Oxygen Isotope Compositions: Effects of Diet and Physiology. Geochimica et Cosmochimica Acta 60:38893896.10.1016/0016-7037(96)00248-7CrossRefGoogle Scholar
Levinson, Alfred A., Luz, Boaz, and Kolodny, Yehoshua 1987 Variations in Oxygen Isotopic Compositions of Human Teeth and Urinary Stones. Applied Geochemistry 2:367371.10.1016/0883-2927(87)90021-7Google Scholar
Longinelli, Antonio 1984 Oxygen Isotopes in Mammal Bone Phosphate: A New Tool for Paleohydrological and Paleoclimatological Research? Geochimica et Cosmochimica Acta 48:385390.10.1016/0016-7037(84)90259-XCrossRefGoogle Scholar
Longinelli, Antonio, and Paladino, A. Peretti 1980 Oxygen Isotope Composition of Water from Mammal Blood: First Results. Mass Spectrometry in Biomedical, Medical and Environmental Research 1:135139.Google Scholar
Luz, Boaz, and Kolodny, Yehoshua 1985 Oxygen Isotope Variations in Phosphate of Biogenic Apatites. IV. Mammal Teeth and Bones. Earth and Planetary Science Letters 75:2936.10.1016/0012-821X(85)90047-0Google Scholar
Luz, Boaz, Cormie, Alison B., and Schwarcz, Henry P. 1990 Oxygen Isotope Variations in Phosphate of Deer Bones. Geochimica et Cosmochimica Acta 54:17231728.10.1016/0016-7037(90)90403-8Google Scholar
Luz, Boaz, Kolodny, Yehoshua, and Horowitz, Michal 1984 Fractionation of Oxygen Isotopes between Mammalian Bone-Phosphate and Environmental Drinking Water. Geochimica et Cosmochimica Acta 48:16891693.10.1016/0016-7037(84)90338-7Google Scholar
Meyer-Rochow, V.B., Cook, I., and Hendy, C.H. 1992 How to Obtain Clues from the Otoliths of an Adult Fish about the Aquatic Environment it Has Been in as a Larvae. Biochemistry and Physiology 103A:333334.10.1016/0300-9629(92)90590-MGoogle Scholar
Molleson, Theya 1988 Trace Elements in Human Teeth. In Trace Elements in Environmental History, edited by Gisela, Grupe and Hermann, B, pp. 6782. Springer-Verlag, Berlin.10.1007/978-3-642-73297-3_6Google Scholar
Nelson, C.S., Northcote, T.G., and Hendy, C.H. 1989 Potential Use of Oxygen and Carbon Isotope Composition of Otoliths to Identify Migratory and Non-migratory Stocks of the New Zealand Common Smelt: A Pilot Study. New Zealand Journal of Marine and Freshwater Research 23:337344.10.1080/00288330.1989.9516370CrossRefGoogle Scholar
Parfitt, A.M. 1983 The Physiologic and Clinical Significance of Bone Histomorphometric Data. In Bone Histomorphometry: Techniques and Interpretation, edited by Recker, Robert R., pp. 143223. CRC Press, Boca Raton, FL.Google Scholar
Periera, Grégory, and Spence, Michael W. 2004 Restos óseos encontrados en la Pirámide de la Luna. In Viaje al centro de la Pirámide de la Luna: Recientes descubrimientos en Teotihuacán, pp. 3536. Consejo Nacional para la Cultura y las Artes, Instituto Nacional de Antropología e Historia, and Arizona State University, Mexico City.Google Scholar
Price, T. Douglas, and Gestsdottir, Hilda 2006 The First Settlers of Iceland: An Isotopic Approach to Colonization. Antiquity 80:130144.10.1017/S0003598X00093315CrossRefGoogle Scholar
Price, T. Douglas, Burton, James H., and Bentley, Robert A. 2002 Characterization of Biologically Available Strontium Isotope Ratios for the Study of Prehistoric Migration. Archaeometry 44:117135.10.1111/1475-4754.00047Google Scholar
Price, T. Douglas, Manzanilla, Linda, and Middleton, William D. 2000 Immigration and the Ancient City of Teotihuacan in Mexico: A Study Using Strontium Isotope Ratios in Human Bone and Teeth. Journal of Archaeological Science 27:903913.10.1006/jasc.1999.0504Google Scholar
Rogers, G., and Hawkesworth, C.J. 1989 A Geochemical Traverse Across the North Chilean Andes: Evidence for Crust Generation from the Mantle Wedge. Earth and Planetary Science Letters 91:271285.10.1016/0012-821X(89)90003-4Google Scholar
Rosenthal, Harold L. 1981 Content of Stable Strontium in Man and Animal Biota. In Handbook of Stable Strontium, edited by Skoryna, S.C., pp. 503514. Plenum Press, New York.10.1007/978-1-4684-3698-3_30Google Scholar
Schoeninger, Margaret, Hallin, Kris, Reeser, Holly, Valley, John W., and Fournellec, John 2003 Isotopic Alteration of Mammalian Tooth Enamel. International Journal of Osteoarchaeology 13:1119.10.1002/oa.653Google Scholar
Schroeder, Henry A., Nason, Alexis P., and Tipton, I.H. 1972 Essential Metals in Man: Strontium and Barium. Journal of Chronic Diseases 25:491517.10.1016/0021-9681(72)90150-6Google Scholar
Schwarcz, Henry P, Gibbs, Linda, and Knyf, Martin 1991 Oxygen Isotope Analysis as an Indicator of Place of Origin. In Snake Hill: An Investigation of a Military Cemetery from the War of 1812, edited by Pfeiffer, Susan and Williamson, Ron F., pp. 263268. Dundurn Press, Toronto.Google Scholar
Shemesh, Aldo 1990 Crystallinity and Diagenesis of Sedimentary Apatites. Geochimica et Cosmochimica Acta 54:24332438.10.1016/0016-7037(90)90230-IGoogle Scholar
Sillen, Andrew, Hall, Grant, and Armstrong, Roberta 1998 87Sr/86Sr ratios in Modern and Fossil Food-Webs of the Sterkfontein Valley: Implications for Early Hominid Habitat Preference. Geochimica et Cosmochimica Acta 62: 24632478.10.1016/S0016-7037(98)00182-3CrossRefGoogle Scholar
Spence, Michael W., and Pereira, Grégory 2007 The Human Skeletal Remains of the Moon Pyramid, Teotihucan. Ancient Mesoamerica 18(1):147157.10.1017/S0956536107000090Google Scholar
Spence, Michael W., and To, Denise 2000 Los Restos Humanos de la Primera Temporada de Excavaciones en la Pirámide de la Luna. Report to the Directors of the Moon Pyramid Project, Teotihuacan Research Laboratory, San Juan Teotihuacan, Mexico.Google Scholar
Spence, Michael, White, Christine D., Rattray, Evelyn D., and Longstaffe, Fred J. 2004 Un análysis de las proportiones de los isótopos en los entieros del Barrio de los Commerciantes. In La Segunda Mesa Redonda de Teotihuacan, pp. 453492. Centro de Estudios Teotihuacanos, Instituto Nacional de Anthropología e Historia, Mexico City.Google Scholar
Spence, Michael, White, Christine D., Rattray, Evelyn D., and Longstaffe, Fred J. 2005 Past Lives in Different Places: The Origins and Relationships of Teotihuacan's Foreign Residents. In Early Civilizations, Settlement, and Subsistence: Essays in Honour of Jeffrey R. Parsons, edited by Blanton, Richard E., pp. 155197. Cotsen Institute, University of California, Los Angeles.Google Scholar
Stuart-Williams, Hilary LeQ, and Schwarcz, Henry P. 1995 Oxygen Isotope Analysis of Silver Orthophosphate Using a Reaction with Bromine. Geochimica et Cosmochimica Acta 58:38373841.10.1016/0016-7037(95)00304-IGoogle Scholar
Stuart-Williams, Hilary LeQ, and Schwarcz, Henry P. 1997 Oxygen Isotope Determination of Climatic Variation Using Phosphate from Beaver Bone, Tooth Enamel and Dentine. Geochimica et Cosmochimica Acta 61:25392550.10.1016/S0016-7037(97)00112-9Google Scholar
Sugiyama, Saburo 2005 Human Sacrifice, Militarism, and Rulership: Materialization of State Ideology at the Feathered Serpent Pyramid, Teotihuacan. Cambridge University Press, Cambridge.10.1017/CBO9780511489563Google Scholar
Sugiyama, Saburo, and Cabrera Castro, Rubén 2007 The Moon Pyramid Project and the Teotihuacan State Polity: A Brief Summary of the 1998–2004 Excavations. Ancient Mesoamerica 18(1):109125.10.1017/S0956536107000053Google Scholar
Sugiyama, Saburo, and López Luján, Leonardo 2007 Dedicatory Burial/Offering Complexes at the Moon Pyramid, Teotihuacan: A Preliminary Report of 1998–2004 Explorations. Ancient Mesoamerica 18(1):127146.10.1017/S0956536107000065Google Scholar
Sugiyama, Saburo, Cabrera Castro, Rubén, and López Luján, Leonardo 2004 The Moon Pyramid Burials. In Voyage to the Center of the Moon Pyramid: Recent Discoveries in Teotihuacan, pp. 2030. Instituto Nacional de Antropología e Historia, Mexico City.Google Scholar
Torres, Ignacio, Verma, Surendra P., and Carrasco-Nuñez, Gerardo 2000 Complication of Radiogenic Isotope Data in Mexico and their Petrogenetic Implications. Proceedings of the Indian Academy of Sciences 109:6778.Google Scholar
Vernois, V., Bao, M. Ung, and Deschamps, N. 1988 Chemical Analysis of Human Dental Enamel from Archaeological Sites. In Trace Elements in Environmental History, edited by Gisela, Grupe and Hermann, B., pp. 8390. Springer-Verlag, Berlin.10.1007/978-3-642-73297-3_7Google Scholar
Weidemann, Felicitas B., Bocherens, Hervé, Mariotti, André, von den Driesch, Angela, and Grupe, Gisela. 1999 Methodological and Archaeological Implications of Intra-tooth Isotopic Variation (δ13C, δ18O) in Herbivores from Ain Ghazal (Jordan, Neolithic). Journal of Archaeological Science 26:697704.10.1006/jasc.1998.0392Google Scholar
White, Christine D., Spence, Michael W., and Longstaffe, Fred J. 2004 Demography and Ethnic Continuity in the Tlailotlacan Enclave of Teotihuacan: The Evidence from Stable Oxygen Isotopes. Journal of Anthropological Archaeology 23:385403.10.1016/j.jaa.2004.08.002Google Scholar
White, Christine D., Spence, Michael W., and Longstaffe, Fred J. 2002 Geographic Identities of the Sacrificial Victims at the Feathered Serpent Pyramid: Implications for the Nature of State Power. Latin American Antiquity 13:217236.10.2307/971915Google Scholar
White, Christine D., Spence, Michael W., and Longstaffe, Fred J. 2000 The Identification of Foreigners in Mortuary Contexts Using Oxygen-Isotope Ratios: Some Mesoamerican Examples. Paper presented at the 69th Annual Meeting of the American Association for Physical Anthropology, San Antonio, TX.Google Scholar
White, Christine D., Longstaffe, Fred J., Law, Kimberley, and Pendergast, David M. 2001 Revisiting the Teotihuacan Connection at Altun Ha: Oxygen Isotope Analysis of Tomb F-8/1. Ancient Mesoamerica 12:6572.10.1017/S0956536101121103CrossRefGoogle Scholar
White, Christine D., Longstaffe, Fred J., Spence, Michael W., and Law, Kim 2000 Testing the Nature of Teotihuacan Imperialism at Kaminaljuyú Using Phosphate Oxygen-Isotope Ratios. Journal of Anthropological Research 56:535558.10.1086/jar.56.4.3630930Google Scholar
White, Christine D., Spence, Michael W., Stuart-Williams, Hilary LeQ, and Schwarcz, Henry P. 1998 Oxygen Isotopes and the Identification of Geographical Origins: The Valley of Oaxaca versus the Valley of Mexico. Journal of Archaeological Science 25:643655.10.1006/jasc.1997.0259Google Scholar
White, Christine D., Storey, Rebecca, Longstaffe, Fred J., and Spence, Michael W. 2004 Immigration, Assimilation and Status in the Ancient City of Teotihuacan: Stable Isotopic Evidence from Tlajinga 33. Latin American Antiquity 15:176198.10.2307/4141553Google Scholar
Wright, Lori E., and Schwarcz, Henry P. 1999 Correspondence between Stable Carbon, Oxygen, and Nitrogen Isotopes in Human Tooth Enamel and Dentine: Infant Diets and Weaning at Kaminaljuyú. Journal of Archaeological Science 26:11591170.10.1006/jasc.1998.0351Google Scholar
Wright, Lori E., and Schwarcz, Henry P. 1998 Stable Carbon and Oxygen Isotopes in Human Tooth Enamel: Identifying Breastfeeding and Weaning in Prehistory. American Journal of Physical Anthropology 106:118.10.1002/(SICI)1096-8644(199805)106:1<1::AID-AJPA1>3.0.CO;2-WGoogle Scholar
Yurtsever, Yuecel, Gat, Joel R. 1981 Atmospheric Waters. In Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle, edited by Gat, Joel R. and Gonfiantini, R., pp. 103142. Technical Report Series, No. 210. International Atomic Energy Agency, Vienna.Google Scholar