Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-23T04:58:14.602Z Has data issue: false hasContentIssue false

Chronological Research at Copan: Methods and implications

Published online by Cambridge University Press:  18 October 2010

AnnCorinne Freter
Affiliation:
Department of Sociology and Anthropology, Ohio University, Athens, OH 45701, USA

Abstract

As a consequence of long-term archaeological research at Copan, 1,425 archaeological sites containing 4,507 structures have been located and mapped over an area of 135 km2. As part of the PAC II research, 200 archaeological sites representing a 15% stratified random sample of all valley sites were test excavated from 1983–1989. From these excavations, 2,150 obsidian hydration dates were processed, representing the largest number of chronometric dates from controlled contexts currently available from any southern Lowland Maya site. Based on this chronological research, there appears to be an excellent fit with various other available chronological techniques for all time phases except the ending date of the important Coner ceramic phase, which now appears to have extended to A.D. 1250. This more detailed Copan chronology suggests that the political collapse of the Main Group and immediate vicinity was quite sudden, taking place c. A.D. 800–830. Beyond that, however, the chronometric data provide evidence that some of the secondary elite, or lineage heads, and large numbers of rural commoners continued to reside within the valley in reduced courtyard groups or small rural hamlets for about 400 years following the decentralization of the Copan polity.

Resumen

La segunda fase del Proyecto Arqueológico Copan (PAC II) incluyó un reconocimiento de asentamientos en el valle de Copan en el cual se localizaron y cartografiaron 1,425 lugares arqueológicos que contenían 4,507 estructuras en un área de 135 km2. Como parte de esta investigación, se hicieron excavaciones de prueba en 200 lugares que representaban una muestra al azar estratificada de todos los lugares ee el valle. De estas excavaciones se procesaron 2,150 fechas de hidratación de obsidiana. Estos esfuerzos combinados ban creado uno de los conjuntos de datos sobre asentamientos más detallados cronológicamente dentro de la región maya de las tierras bajas y con una sola excepción apoyan las reconstrucciones cronológicas previas.

Al inicio de esta investigatión uno de los problemas cronológicos primaries en Copan era la fase cerámica Coner del período clásico tardío, que no había sido subdividido en fases, y 99% de los lugares arqueológicos dentro del área reconocida en el valle de Copan se asocian con esa fase cerámica. Por lo tanto, el momento cumbre del control político de la unidad política de Copan no se podía distinguir de su declive. Enfrentados a este problema cronológico, el fechamiento mediante la hidratación de obsidiana fue seleccionada como alternativa ya que los artefactos de obsidiana eran comunes en los asentamientos del valle de Copan y la fijación de fechas mediante hidratación es relativamente barata, permitiendo procesar un gran numero de fechas requeridas para la reconstrucción de las dinámicas del asentamiento maya en el valle al menor costo.

A diferencia de otras técnicas cronométricas de fechamiento, la hidratación es dependiente del contexto. Las condiciones del ambiente de los suelos, especialmente la temperatura y la humedad relativa a que es sometido un objeto de obsidiana, afectan el ritmo de hidratación y por lo tanto afectan la fecha cronométrica generada. Una complicatión adicional es que este contexto ambiental enterrado es dinámico, ya que las variantes climatológicas del mundo, la vegetación, y las características del suelo afectan y cambian la temperatura y la humedad relativa del suelo en un lugar dado, en el tiempo entre 1000 y 2000 años. Conscientes de estos problemas, las fechas por hidratación generadas del valle de Copan se verificaron usando otras fuentes disponibles de informatión cronológica–fechas C-14, fechas arqueomagnéticas, la seriación de cerámica, la estratigrafía, y las secuencias arquitectónicas internas. Además, todas las suposiciones sobre la temperatura ambiental fueron verificados mediante el uso de informatión de una estación meteorológica durante un período de 30 años combinada con varias mediciones de temperatura de celdas termales anuales específicas en el valle de Copan. Estas bases de datos cuidadosamente controladas y verificadas han logrado producir una reconstructión mas exacta de la cronología del asentamiento de Copan que lo que había sido posible hasta ahora.

Las dos implicaciones primarias de esta investigatión cronológica conducen a refinamientos en la metodología y en las reconstrucciones de la historia cultural de Copan. Primero, esta investigación indica que la fijación de fechas mediante la hidratación de obsidiana, cuando se conduce bajo condiciones estrictamente controladas, puede producir fechas cronométricas útiles, efectiva y económicamente, en gran escala. Segundo, parece haber una adecuación excelente con todo tipo de datos cronológicos para todas las fases de tiempo, excepto para la fecha final de la importante fase Coner, que ahora parece haberse extendido hasta 1250 d.C. Los resultados de esta cronología detallada sugieren que el colapso político en el Grupo Principal fue muy súbito, como se había recoestruido anteriormente, y que la polis de Copan colapsó y la población del valle descentralizó entre el 800 y 830 d.C. Sin embargo, gracias al trabajo realizado en asentamientos rurales combinado con esta cronología refinada, se hace claro ahora que luego del colapso de la élite de gobereantes dinásticos de Copan dentro del Grupo Principal, parte de la élite secundaria junto a las cabezas dinásticas y comuneros rurales continuaron habitanto el valle en grupos comunes reducidos o pequeñas aldeas rurales por aproximadamente 400 años, hasta que también abandonaron el área gradualmente para el año 1250 d.C. Estos datos, juntos a los estudios palinológicos, las simulaciones agrícolas, y los análisis energéticos indican, por lo menos, que la urbanización contribuyó a la deforestación del piamonte, lo que a su vez causó erosión horizontal a gran escala en y alrededor del Grupo Principal–un proceso de deterioro ambiental que contribuyó al colapso de la unidad política de Copan y que explica la subsiguiente migratión externa de la población.

Type
Special Section: The Archaeology of Ancient Copan
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrams, Elliot M., and Rue, David 1988 The Causes and Consequences of Deforestation among the Prehistoric Maya. Human Ecology 16(4):377395.CrossRefGoogle Scholar
Ambrose, W. R. 1984 Soil Temperature Monitoring at Lake Mungo: Implications for Racemisation Dating. Australian Archaeology 19:6474.Google Scholar
Andrews, E. Wyllys V, and Fash, Barbara W. 1992 Continuity and Change in a Royal Maya Residential Complex at Copan. Ancient Mesoamerica 3:6388.CrossRefGoogle Scholar
Ashmore, Weedy 1991 Site-Planning Principles and Concepts of Directionality among the Ancient Maya. Latin American Antiquity 2:199226.CrossRefGoogle Scholar
Bates, John K., Abrajano, T. Jr, Elbert, William, Mazer, James J., and Gerding, T. 1988 Experimental Hydratioe Studies of Natural and Synthetic Glasses. In Materials Research Society Symposium Proceedings 123:237244. Pittsburgh.Google Scholar
Baudez, Claude 1986 Iconography and History at Copae. In The Southeast Maya Periphery, edited by Urban, Patricia A. and Schortmae, Edward M., pp. 1726. University of Texas Press, Austin.CrossRefGoogle Scholar
Cobean, Robert H., Vogt, James R., Glascock, Michael D., and Stacker, Terrance L. 1991 High-precision Trace-Element Characterization of Major Mesoamerican Obsidian Sources and Further Analyses of Artifacts from San Lorenzo Tenochtitlan, Mexico. Latin American Antiquity 2(1):6991.CrossRefGoogle Scholar
Diamanti, Melissa 1991 Domestic Organization at Copan: Reconstruction of Elite Maya Households through Ethnographic Models. Unpublished Ph.D. dissertation, Pennsylvania State University, University Park.Google Scholar
Evans, Clifford, and Meggers, Betty J. 1960 A New Dating Method using Obsidian: Part II. American Antiquity 25:523537.CrossRefGoogle Scholar
Evans, Susan, and Freter, AnnCorinne 1989 Hydration Analysis of Obsidian from Cihuatecpan, an Aztec Period Village in Mexico. Paper presented at the 54th Annual Meeting of the Society for American Archaeology, Atlanta.Google Scholar
Fash, William 1983a Maya State Formation: A Case Study and its Implications. Unpublished Ph.D. dissertation, Harvard University, Cambridge, MA.Google Scholar
Fash, William 1983b Recoeocimento y excavaciones en el valle. In Introductión a la arqueológia de Copan, Honduras, vol. 1, edited by Baudez, Claude, pp. 229469. Proyecto Arqueológico Copan, Secretaría de Estado en el Despacho de Cultura y Turismo, Tegucigalpa, Honduras.Google Scholar
Fash, William, and Sharer, Robert J. 1991 Sociocultural Developments and Methodological Issues at Copan, Honduras: A Conjunctive Perspective. Latin American Antiquity 2:166187.Google Scholar
Fash, William, and Stuart, David 1991 Dynastic History and Cultural Evolution at Copan, Honduras. In Classic Maya Political History: Hieroglyphic and Archaeological Evidence, edited by Culbert, T. Patrick, pp. 147179. Cambridge University Press, Cambridge.Google Scholar
Fash, William L., Williamson, Richard V., Lanes, Carlos Rudy, and Palka, Joel 1992 The Hieroglyphic Stairway and Its Ancestors: Investigations of Copan Structure 10L-26. Ancient Mesoamerica 3:105115.CrossRefGoogle Scholar
Freter, AnnCorinne 1988 The Classic Maya Collapse at Copan, Honduras: A Regional Settlement Perspective. Unpublished Ph.D. dissertation, Pennsylvania State University, University Park.Google Scholar
Freter, AnnCorinne 1991 A Reconstruction of the Late Classic Rural Ceramic Production System in the Copan Valley, Honduras. Paper presented at the 56th Annual Meeting of the Society for American Archaeology, New Orleans, LA.Google Scholar
Friedman, Irving, and Long, William 1976 Hydration Rate of Obsidian. Science 191:327352.Google Scholar
Friedman, Irving, and Smith, Robert L. 1960 A New Method Using Obsidian Dating: Part I. American Antiquity 25:476522.Google Scholar
Friedman, Irving, and Trembour, Fred 1983 Obsidian Hydration Dating Update. American Antiquity 48(3):544547.CrossRefGoogle Scholar
Haller, W. 1963 Concentration-Dependent Diffusion Coefficient of Water in Glass. Physics and Chemistry of Glasses 4:217220.Google Scholar
Hammond, Norman 1989 Obsidian Hydration Dating of Tecep Phase Occupation at Nohmul, Belize. American Antiquity 54:513521.CrossRefGoogle Scholar
Hatch, James, Michels, Joseph, Stevenson, Christopher, Scheetz, Barry E., and Geidel, Richard 1990 Hopewell Obsidian Studies: Behavioral Implications of Recent Sourcieg and Dating Research. American Antiquity 55:461479.Google Scholar
Hench, Larry L., and Clark, D.E. 1978 Physical Chemistry of Surface Glasses. Journal of Non-Crystal Solids 28:83105.CrossRefGoogle Scholar
Hendon, Julia 1987 The Uses of Maya Structures: A Study of Architecture, and Artifact Distribution at Sepulturas, Copan, Honduras. Unpublished Ph.D. dissertation, Harvard University, Cambridge, MA.Google Scholar
Hendon, Julia 1991 Status and Power in Classic Maya Society: An Archaeological Study. American Anthropologist 93:894918.Google Scholar
Joyce, Rosemary A. 1986 Terminal Classic Interaction on the Southeastern Maya Periphery. American Antiquity 51:313329.Google Scholar
Landford, W.A. 1978 N-15 Hydration Profiling: Scientific Implications. Nuclear Instrument Methods 149:17.Google Scholar
Lee, R. 1969 Chemical Temperature Integration. Journal of Applied Meteorology 8:423430.2.0.CO;2>CrossRefGoogle Scholar
Lentz, David L. 1991 Maya Diets of the Rich and Poor: Paleoethnobotanical Evidence from Copan. Latin American Antiquity 2:269287.Google Scholar
Leventhal, Richard M. 1979 Settlement Patterns at Copan, Honduras. Unpublished Ph.D. dissertation, Harvard University, Cambridge.Google Scholar
Longyear, John M. 1952 Copan Ceramics: A Study of Southeastern Maya Pottery. Carnegie Institution of Washington Publication No. 597. Washington, DC.Google Scholar
Mazer, James J., Stevenson, Christopher, Elbert, William L., and Bates, John K. 1991 The Experimental Hydration of Obsidian as a Function of Relative Humidity and Temperature. American Antiquity 56:504513.Google Scholar
Meighan, Clement W. 1976 Empirical Determination of Obsidian Hydration Rates from Archaeological Evidence. In Advances in Obsidian Glass Studies, edited by Taylor, R.E., pp. 106119. Noyes Press, Park Ridge, NJ.Google Scholar
Meighan, Clement W. 1983 Obsidian Dating in California: Theory and Practice. American Antiquity 48:600609.Google Scholar
Michels, Joseph 1982 Hydration Rate Constants for Ixtepeque Obsidian, Jutiapa Mexico. MOHLAB Technical Report No. 7. MOHLAB, State College, Pennsylvania.Google Scholar
Michels, Joseph 1986a Hydration Rate Constants for Cerro de Las Navajas Obsidian Hidalgo, Mexico. MOHLAB Technical Report No. 6. MOHLAB, State College, Pennsylvania.Google Scholar
Michels, Joseph 1986b Obsidian Hydration Dating. Endeavor, New Series 10:97100.CrossRefGoogle Scholar
Michels, Joseph, and Tsong, Ignatius S.T. 1980 Obsidian Hydration Dating: A Coming of Age. In Advances in Archaeological Method And Theory, vol. 3, edited by Schiffer, Michael B., pp. 405444. Academic Press, New York.Google Scholar
Michels, Joseph, Tsong, Ignatius S.T., and Smith, George A. 1983 Experimentally Derived Hydratioe Rates in Obsidian Dating. Archaeometry 25:107117.Google Scholar
Murdy, Carson 1984 Prehistoric Man-Land Relationships through Time in the Valley of Guatemala. Unpublished Ph.D. dissertation, Pennsylvania State University, University Park.Google Scholar
Oeschger, H. 1982 The Contribution of Radioactive and Chemical Dating to the Understanding of the Environmental System. In Nuclear and Chemical Dating Techniques, Interpreting the Environmental Record, edited by Currie, Lloyd A., pp. 542. American Chemical Society, Washington, DC.Google Scholar
Pahl, Gary 1977 The Inscriptions of Rio Amarillo and Los Hijos, Secondary Centers of the Southeast Maya Frontier. Journal of Latin American Lore 3:133154.Google Scholar
Rice, Prudence, Michel, Henry V., Asaro, Frank, and Stress, F. 1985 Provenience Analysis of Obsidians from the Central Peten Lakes Region, Guatemala. American Antiquity 50:591604.CrossRefGoogle Scholar
Ridings, Rosanna 1991 Obsidian Hydration Dating: The Effects of Mean Exponential Ground Temperature and Depth of Artifact Recovery. Journal of Field Archaeology 18:7785.Google Scholar
Rue, David 1986 A Pafynological Analysis of Prehispanic Human Impact in the Copan Valley, Honduras. Unpublished Ph.D. dissertation, Pennsylvania State University, University Park.Google Scholar
Rue, David 1987 Early Agriculture and Early Postclassic Occupation in Western Honduras. Nature 326:285286.Google Scholar
Sanchez, Pedro A. 1976 Properties and Management of Soils in the Tropics. John Wiley and Sons, New York.Google Scholar
Sanders, William T. (editor) 1986 Excavaciones en el area urbana de Copan, vol. 1. Institute Hondureño de Antropología e Historia, Tegucigalpa.Google Scholar
Sanders, William T. 1989 Household, Lineage, and State at Eighth-Century Copan, Honduras. In The House of the Bacabs, edited by Webster, David, pp. 89105. Dumbarton Oaks Research Library and Collection, Washington, DC.Google Scholar
Scheetz, Barry E., and Stevenson, Christopher M. 1988 The Role of Resolution and Sample Preparation in Hydration Rim Measurement: Implications for Experimentally Determined Hydration Rates. American Antiquity 53:110117.CrossRefGoogle Scholar
Schele, Linda, and Freidel, David 1990 A Forest of Kings. William Morrow, New York.Google Scholar
Sharer, Robert J., Miller, Julia C., and Traxler, Loa P. 1992 Evolution of Classic Period Architecture in the Eastern Acropolis, Copan, Honduras: A Progress Report. Ancient Meso-america 3:145159.Google Scholar
Sheehy, James J. 1991 Structure and Change in a Late Classic Maya Domestic Group at Copan, Honduras. Ancient Mesoamerica 2:119.Google Scholar
Stephens, John L. 1841 Incidents of Travel in Central America, Chiapas and Yucatan. 2 vols. Harper and Brothers, New York.Google Scholar
Stevenson, Christopher M., Carpenter, J., and Scheetz, Barry E. 1989 Obsidian Dating: Recent Advances in the Experimental Determination and Application of Hydration Rates. Archaeometry 31:193206.CrossRefGoogle Scholar
Storey, Rebecca 1983 Paleodemografía en Copan. Paper presented at the Segundo Seminario Argueologíco Hoedureño, Tegucigalpa.Google Scholar
Storey, Rebecca 1992 The Children of Copan: Issues in Paleopathology and Paleodemography. Ancient Mesoamerica 3:161167.Google Scholar
Taylor, R.E. 1976 Advances In Obsidian Glass Studies. Noyes Press, Park Ridge, NJ.Google Scholar
Tremaine, Kim 1989 Obsidian as a Time Keeper: An Investigation in Absolute and Relative Dating. Unpublished M.A. thesis, Sonoma State University, Sonoma, CA.CrossRefGoogle Scholar
Tsong, Ignatius S., Houser, C., Yusuf, N., Messier, R., White, W., and Michels, Joseph 1978 Obsidian Hydration Profiles Measured by Sputter-Inducted Optical Emission. Science 201:339341.Google Scholar
Viel, Rene 1983 Evolutión de la cerámica de Copan: Resultados preliminares. In Introducción a la arqueología de Copan, Honduras, vol. 1, edited by Baudez, Claude F., pp. 471550. Proyecto Arqueológico Copan, Secretaría de Estado en el Despacho de Cultura y Turismo, Tegucigalpa, Honduras.Google Scholar
Webster, David L., and Freter, AnnCorinne 1990a The Demography of Late Classic Copan. In Precolumbian Population History in the Maya Lowlands, edited by Culbert, T. Patrick and Rice, Don S., pp. 3762. University of New Mexico Press, Albuquerque.Google Scholar
Webster, David L., and Freter, AnnCorinne 1990b Settlement History and the Classic Collapse at Copan:A Re-fined Chronological Perspective. Latin American Antiquity 1:6685.CrossRefGoogle Scholar
Webster, David, Fash, William, and Abrams, Elliot 1986 Excavaciones en el patio A, grupo 9N-8. In Excavaciones en el area urbana de Copan, edited by Sanders, William T., pp. 155318. Institute Hondureno de Antropologia e Historia, Tegucigalpa.Google Scholar
Webster, David, and Gonlin, Nancy 1988 Household Remains of the Humblest Maya. Journal of Field Archaeology 15:169190.Google Scholar
Webster, David, Sanders, William T., and Rossum, Peter Van 1992 A Simulation of Copan Population History and Its Implications. Ancient Mesoamerica 3:185197.Google Scholar
Wernstedt, Frederick L. 1972 World Climatic Data. Climatic Data Press, Lemont, PA.Google Scholar
Willey, Gordon R., and Leventhal, Richard 1979 A Preliminary Report on Prehistoric Maya Settlement in the Copan Valley. In Maya Archaeology and Ethnohistory, edited by Hammond, Norman and Willey, Gordon R., pp. 75102. University of Texas Press, Austin.Google Scholar
Wingard, John 1991 The Role of Soils in the Developmental Sequence at Copan, Honduras. Paper presented at the 56th Annual Meeting of the Society for American Archaeology, New Orleans, LA.Google Scholar