Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T13:17:39.313Z Has data issue: false hasContentIssue false

Possible Mechanism of the Heredity of Twinning

Published online by Cambridge University Press:  01 August 2014

L. Gedda*
Affiliation:
The Gregor Mendel Institute for Medical Geneticsand Twin Research, Rome
G. Brenci
Affiliation:
The Gregor Mendel Institute for Medical Geneticsand Twin Research, Rome
*
The Mendel Institute, Piazza Galeno 5, 00161 Rome, Italy

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is a frequent observation that twinning runs in the families [5] and we have recently reported that such is also the case with Gregor Mendel's pedigree [4]. The problem we are concerned with, now, is the identification of the “gemellogenetic” factor postulated by Gedda already in 1951 [2].

We thought we should start by going back to experimental embryology. Clearly, as shown by the experimentally induced MZ twinning in Triton or the spontaneous multiple MZ twinning in Armadillo, there must exist a temporal threshold below which individual parts of a single conceptus can still show totipotence.

Interestingly, recent studies of molecular histology have stressed the role of cell membranes and of membrane receptors in the transmission of specific messages related to the position and function of the cell. This has led Edelman [1], in particular, to identify a specific kind of molecule that appears early in-embryonic development and is responsible for cell adhesion, thus contributing to organogenesis and the shaping of the embryo by regulating cell movements and the topologic development of tissues.

These so-called cell-adhesion molecules (CAM) are proteins that can differentiate both in function and in expression. In terms of function, there are molecules responsible for the adhesion of nerve cells (N-CAM), of liver cells (L-CAM), etc. In terms of expression, there are embryonic forms (E-CAM) and adult forms (A-CAM), the former being characterized by larger quantities of sialic acid. This chemical difference accounts for a different aggregation effect on the cells, that is, for a different cell adhesion. Moreover, the E-CAM and A-CAM can be interconverted, at different times and with variable speed.

Type
Research Article
Copyright
Copyright © The International Society for Twin Studies 1986

References

REFERENCES

1. Edelman, GM (1983): Cell adhesion molecules. Science 219, no. 4584.CrossRefGoogle ScholarPubMed
2. Gedda, L (1951): Studio dei Gemelli. Orizzonte Medico, Rome. Amer transl: Twins in Nature and Science. Charles C. Thomas, Springfield, 1961.Google Scholar
3. Gedda, L, Brenci, G (1974): Chronogenetica. L'Eredità del Tempo Biologico. EST Mondadori, Milano. Amer Transl: Chronogenetics. The Inheritance of Biological Time. Charles C. Thomas, Springfield, 1978.Google Scholar
4. Gedda, L, Parisi, P (1985): Editorial. Gregor Mendel and twins. Acta Genet Med Gemellol 34: 121124.Google Scholar
5. Parisi, P, Gatti, M, Prinzi, G, Caperna, G (1983): Familial incidence of twinning. Nature 304: 626628.Google Scholar