Published online by Cambridge University Press: 01 August 2014
Since the original description of the Prader-Willi syndrome (PWS) in 1956 [1], and the recognition of the involvement of the proximal region of chromosome 15 in this disorder [2], understanding of the molecular basis of the genetic defect in PWS has progressed rapidly. A set of clinical criteria has been defined [3], although the diagnosis on clinical grounds alone remains difficult in the first year of life. Research has focussed both on improving the diagnostic molecular and cytogenetic tests for PWS and on identifying and defining the functions of genes whose expression is altered in this neurobehavioral disorder. Furthermore, this region is known to be subject to genomic imprinting effects, so that expression of genes involved in PWS is expected to be exclusively from the paternal allele.
A critical step in the definition of the region containing such genes was the identification of a subset of unusual patients affected with either PWS or the Angelman syndrome, which also involves a gene or genes in the proximal region of chromosome 15. These unique patients, who have chromosome 15 translocations or deletions, helped to narrow the critical region to an interval containing less than 500 kb of DNA [4-6] (Fig. 1). As will be discussed, below, regulatory elements exist in this 500 kb region which alter the expression of genes located outside this interval [7, 8].