Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-23T18:10:58.325Z Has data issue: false hasContentIssue false

Soil biological criteria as indicators of soil quality: Soil microorganisms

Published online by Cambridge University Press:  30 October 2009

Suzanne Visser
Affiliation:
Research Associate, Environmental Research Centre, Department of Biological Sciences, University of Calgary, Calgary, Alberta, CanadaT2N 1N4.
Dennis Parkinson
Affiliation:
Professor, Department of Biological Sciences, University of Calgary, Calgary, Alberta, CanadaT2N 1N4.
Get access

Abstract

Diverse soil microbiological studies have attempted to assess deterioration or improvement in soil quality. These studies have been done on three levels: population level studies of the dynamics of species that are presumed to be important or sensitive; community level studies of microbial community structure, such as species diversity and frequency of occurence of species; and ecosystem level studies of a range of soil processes. We suggest that ecosystem level approaches offer the best possibilities for rapidly assessing changes in soil quality. Data from such studies will allow researchers to decide whether to proceed with population or community level studies.

Type
Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Anderson, J.P.E. 1982. Soil respiration. In Page, A.L. (ed). Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, 2nd ed. Amer. Soc. Agronomy, and Soil Sci. Soc. Amer. Madison, Wisconsin, pp. 837871.Google Scholar
2.Anderson, J.P.E., and Domsch, K.H.. 1978. A physiological method for quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10:215221.CrossRefGoogle Scholar
3.Anderson, T.-H., and Domsch, K.H.. 1986. Carbon assimilation and microbial activity in soil. Zeitschrift für Pflanzenernährung und Bodenkunde 149:457468.CrossRefGoogle Scholar
4.Beck, Th. 1984. Mikrobiologische und biochemische Charakterisierung landwirtschaftlich genutzter Böden. I. Die Ermittlung einer Bodenmikrobiologischen Kennzahl. Zeitschrift für Pflanzenernährung und Bodenkunde 147:456466.CrossRefGoogle Scholar
5.Bengtsson, G., and Torstensson, L.. 1988. Soil Biological Variables in Environmental Hazard Assessment. National Swedish Environmental Protection Board, Solna, Sweden, p. 60.Google Scholar
6.Bocock, K.L., and Gilbert, O.J.W.. 1957. The disappearance of leaf litter under different woodland conditions. Plant and Soil 9:179185.CrossRefGoogle Scholar
7.Burns, R.G., and Slater, J.H. (eds). 1982. Experimental Microbial Ecology. Blackwell Scientific Publications, Oxford, England.Google Scholar
8.Domsch, K.H. 1960. Die Wirkung von Bodenfungiciden. IV. Veränderungen in Specktrum der Bodenpilze. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz 67:129150.Google Scholar
9.Domsch, K.H. 1968. Mikrobiologische Präsenz- und Aktivitäts-analysen an fungicidbehandelten Böden. Arb. Univ. Hohenheim, 44. p. 75.Google Scholar
10.Domsch, K.H., and Gams, W.. 1970. Pilze aus Agrarböden. Gustav Fischer Verlag, Stuttgart, Germany.Google Scholar
11.Domsch, K.H., Gams, W., and Anderson, T.-H.. 1980. Compendium of Soil Fungi. Vols. 1 and 2. Academic Press, London, England.Google Scholar
12.Domsch, K.H., Jagnow, G., and Anderson, T.-H.. 1983. An ecological concept for the assessment of side-effects of agrochemicals on soil microorganisms. Residue Reviews 86:65105.Google Scholar
13.Harrison, A.F., Ineson, P., and Heal, O.W. (eds). 1990. Nutrient Cycling in Terrestrial Ecosystems: Field Methods, Applications and Interpretation. Elsevier Applied Science, London and New York.Google Scholar
14.Insam, H., and Domsch, K.H.. 1988. Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microbial Ecology 15:177188.CrossRefGoogle ScholarPubMed
15.Insam, H., and Hasselwandter, K.. 1989. Metabolic quotient of the soil microflora in relation to plant succession. Oecologia 79:174178.CrossRefGoogle ScholarPubMed
16.Insam, H., Parkinson, D., and Domsch, K.H.. 1989. Influence of macroclimate on soil microbial biomass. Soil Biol. Biochem. 21:211221.CrossRefGoogle Scholar
17.Jackson, D.R., Washburne, D., and Ausmus, B.S.. 1977. Loss of Ca and NO3-N from terrestrial microcosms as an indicator of soil pollution. Water, Air and Soil Pollution 8:279284.CrossRefGoogle Scholar
18.Klein, D.A., Sorensen, D.L., and Redente, E.F.. 1985. Soil Enzymes: A Predictor of Reclamation Potential and Progress. In Tate, R.L. and Klein, D.A. (eds). Soil Reclamation Processes: Microbiological Analyses and Applications. Marcel Dekker Inc., New York and Basel, pp. 141171.Google Scholar
19.Lenhard, G. 1956. Die dehydrogenase-activität des Bodens als Mass für mikroorganismentätigkeit im Boden. Zeitschrift für Pflanzenernährung und Bodenkunde 73:111.CrossRefGoogle Scholar
20.Odum, E.P. 1969. The strategy of ecosystem development. Science 164:262270.CrossRefGoogle ScholarPubMed
21.Odum, E.P. 1985. Trends expected in stressed ecosystems. Bioscience 35:419422.CrossRefGoogle Scholar
22.O'Neill, R.V., Ausmus, B.S., Jackson, D.R., Van Hook, R.I., Van Voris, P., Washburne, C., and Watson, A.P.. 1977. Monitoring terrestrial ecosystems by analysis of nutrient export. Water, Air and Soil Pollution 8:271277.CrossRefGoogle Scholar
23.Page, A.L. (ed). 1982. Methods of Soil Analysis. Part 2. Chemical and MicrobiologicalProperties, 2nd ed.Amer. Soc. Agronomy and Soil Sci. Soc. Amer., Madison, Wisconsin.Google Scholar
24.Parkinson, D., and Coleman, D.S.. 1991. Microbial communities, activity and biomass. Agric., Ecosystems and Environment 34:333.CrossRefGoogle Scholar
25.Paul, E.A., and Clark, F.E.. 1989. Soil Microbiology and Biochemistry. Academic Press, New York, N.Y.CrossRefGoogle Scholar
26.Skujins, J. 1978. History of abiotic soil enzyme research. In Burns, R.G. (ed). Soil Enzymes. Academic Press, New York, N.Y. pp. 149.Google Scholar
27.Somerville, L., Greaves, M.P., Domsch, K.H., Verstraete, V., Poole, N. J., van Dijk, H., and Anderson, J.P.E.. 1987. Recommended laboratory tests for assessing the side-effects of pesticides on the soil microflora. Proc. 3rd Int. Workshop, Cambridge, 03 1985, pp. 29.Google Scholar
28.Swift, M.J. 1976. Species diversity and the structure of microbial communities in terrestrial habitats. In: Anderson, J.M. and Macfadyen, A. (eds). The Role of Terrestrial and Aquatic Organisms in Decomposition Processes. Blackwell Scientific Publications, Oxford, England, pp. 185222.Google Scholar
29.Swift, M.J., Heal, O.W., and Anderson, J.M.. 1979. Decomposition in Terrestrial Ecosystems. Univ. of California Press.CrossRefGoogle Scholar
30.Taylor, B., and Parkinson, D.. 1988. A new microcosm approach to litter decomposition studies. Canadian J. Botany 66:19331939.CrossRefGoogle Scholar
31.Visser, S. 1988. Redevelopment of biological activity in stripmine spoils: Saprotrophic fungi (Abstract). Proc. Roy. Soc. Edinburgh, 94B:85.Google Scholar
32.Visser, S., and Parkinson, D.. 1989. Microbial respiration and biomass in a lodgepole pine forest soil acidified with elemental sulphur. Canadian J. Forest Research 19:955969.CrossRefGoogle Scholar
33.Visser, S., Griffiths, C., and Parkinson, D.. 1984a. Reinstatement of biological activity in severely disturbed soils: Effects of mining on the microbiology of three minespoils and microbial development in the minespoils after amendation and planting. Report #RRTAC 84–5. Alberta Land Conservation and Reclamation Council, p. 283.Google Scholar
34.Visser, S., Fujikawa, J., Griffiths, C., and Parkinson, D.. 1984b. Effect of topsoil storage on microbial activity, primary production and decomposition potential. Plant and Soil 82:4150.CrossRefGoogle Scholar
35.Waksman, S.A. 1927. Principles of Soil Microbiology. The Williams and Willkins Co., Baltimore, Maryland.CrossRefGoogle Scholar
36.Waksman, S.A., and Starkey, R.L.. 1924. Microbiological analysis of soil as an index of soil fertility. VII. Carbon dioxide evolution. Soil Sci. 17:141161.Google Scholar
37.Wicklow, D.T., and Carroll, G.C. (eds). 1981. The Fungal Community: Its Organization and Role in the Ecosystem. Marcel Dekker Inc., New York and Basel.Google Scholar
38.Zak, J.C., Fresquez, P.R., and Visser, S., (in press). Soil microbial processes and dynamics: Their importance to effective reclamation. In J. Chambers and G.L. Waide (eds). Evaluating Reclamation Success. General Technical Report. N.E. Forest Experiment Station, Forest Service, U.S. Dept. of Agric.Google Scholar