Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T22:33:27.293Z Has data issue: false hasContentIssue false

Biological control of arthropod pests: Traditional and emerging technologies

Published online by Cambridge University Press:  30 October 2009

Marjorie A. Hoy
Affiliation:
Professor and Entomologist, Department of Entomology, University of California, Berkeley, CA 94720.
Get access

Abstract

Biological control of arthropod pests has a long history of useful practical application. Parasites, predators, and pathogens have been employed in many cases to control pest arthropods in an efficient, cost-effective, and permanent manner. The traditional tactics used in biological control (classical, augmentation, and conservation) remain vital and valuable tools in the biological control of pests for agricultural crops, range lands, forests, and glasshouses. New technologies offer promise. One emerging technique involves the genetic improvement of natural enemies of arthropods through selection, hybridization, or recombinant DNA technology.

Type
Articles
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Abdelrahman, I. 1973. Toxicity of malathion to the natural enemies of California red scale, Aonidiella aurantii (Mask.) (Hemiptera:Diaspididae). Australian Journal of Agricultural Research 24:119133.CrossRefGoogle Scholar
2.Adams, C. H., and Cross, W. H.. 1967. Insecticide resistance in Bracon mellitor, a parasite of the boll weevil. Journal of Economic Entomology 60:10161020.CrossRefGoogle Scholar
3.Allen, H. W. 1954. Propagation of Horogenes molestae, an Asiatic parasite of the Oriental fruit moth, on the potato tuberworm. Journal of Economic Entomology 47:278281.CrossRefGoogle Scholar
4.Avella, M., Fournier, D., Pralavorio, M., and Berge, J. B.. 1985. Selection pour la resistance a la deltamethrine d'une souche de Phytoseiulus persimilis Athias-Henriot. Agronomie 5:177180.CrossRefGoogle Scholar
5.Batra, S. W. T. 1982. Biological control in agroecosystems. Science 215:134139.CrossRefGoogle ScholarPubMed
6.Beckendorf, S. K., and Hoy, M. A.. 1985. Genetic improvement of arthropod natural enemies through selection, hybridization or genetic engineering techniques. In Hoy, M. A. and Herzog, D. C. (eds.). Biological Control in Agricultural IPM Systems, Academic Press, Orlando, Florida, pp. 167187.CrossRefGoogle Scholar
7.Box, H. E. 1956. Battle against Venezuela's cane borer. I. Preliminary investigations and the launching of a general campaign. Sugar, 25–27:30, 45.Google Scholar
8.Clausen, C. P., editor. 1978. Introduced Parasites and Predators of Arthropod Pests and Weeds: A World Review. Agricultural Handbook 480, USDA-ARS, Washington, DC.Google Scholar
9.DeBach, P., editor. 1964. Biological Control of Insect Pests and Weeds. Chapman and Hall, London, England. 844 pp.Google Scholar
10.Ehler, L. E., and Andres, L. A.. 1983. Biological control: exotic natural enemies to control exotic pests. In Wilson, C. L. and Graham, C. L. (eds.). Exotic Plant Pests and North American Agriculture, Academic Press, New York, New York. pp. 395418.CrossRefGoogle Scholar
11.Field, R. P., and Hoy, M. A.. 1986. Evaluation of genetically improved strains of Metaseiulus occidentalis (Nesbitt) (Acarina: Phytoseiidae) for integrated control of spider mites on roses in greenhouses. Hilgardia 54(2):132.CrossRefGoogle Scholar
12.Gilkeson, L. A., and Hill, S. B.. 1986. Genetic selection for and evaluation of non-diapause unes of predatory midge, Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae). Canadian Entomologist 118:869879.CrossRefGoogle Scholar
13.Grafton-Cardwell, E. E., and Hoy, M. A.. 1986. Genetic improvement of common green lacewing, Chrysoperla carnea (Neuroptera: Chrysopidae): selection for carbaryl resistance. Environmental Entomology 15:11301136.CrossRefGoogle Scholar
14.Hagen, K. S., and Franz, J. M.. 1973. A history of biological control. In Smith, R. F., Mittler, T. E., and Smith, C. N. (eds.). History of Entomology. Annual Reviews, Inc., Palo Alto, California, pp. 433476.Google Scholar
15.Headley, J. C., and Hoy, M. A.. 1986. Benefit/cost analysis of an integrated mite management program for almonds. J. Econ. Entomol. 80:555559.CrossRefGoogle Scholar
16.Hoy, M. A. 1984. Genetic improvement of a biological control agent: multiple pesticide resistances and nondiapause in Metaseiulus occidentalis (Nesbitt) (Pytoseiidae). Proceedings VI International Congress of Acarology, Edinburgh, 1982, Acarology VI, Volume 2. D. A. Griffiths and C. E. Bowman, editors, Ellis Horwood Ltd., Halsted Press, New York, New York. pp. 673679.Google Scholar
17.Hoy, M. A. 1985a. Improving establishment of arthropod natural enemies. In Hoy, M. A. and Herzog, D. C. (eds.). Biological Control in Agricultural IPM Systems. Academic Press, Orlando, Florida, pp. 151166.CrossRefGoogle Scholar
18.Hoy, M. A. 1985b. Integrated mite management for California almond orchards. In Helle, W. and Sabelis, M. W. (eds.). Spider Mites, Their Biology, Natural Enemies and Control. Volume 1B. Elsevier Science Publ., Amsterdam, pp. 299310.Google Scholar
19.Hoy, M. A. 1985c. Recent advances in genetics and genetic improvement of the Phytoseiidae. Annual Review of Entomology 30:345370.CrossRefGoogle Scholar
20.Hoy, M. A. 1986. Use of genetic improvement in biological control. Agriculture, Ecosystems, and Environment 15:109119.CrossRefGoogle Scholar
21.Hoy, M. A., and Cave, F. E.. 1988. Selection of the walnut aphid parasite, Trioxys pallidus, for resistance to azinphosmethyl. California Agriculture 42(4):45.Google Scholar
22.Hoy, M. A., and Knop, N. F.. 1981. Selection for and genetic analysis of permethrin resistance in Metaseiulus occidentalis: genetic improvement of a biological control agent. Entomologia Experimentalis et Applicata 30:1018.CrossRefGoogle Scholar
23.Hoyt, S. C. 1969. Integrated chemical control of insects and biological control of spider mites on apple in Washington. Journal of Economic Entomology 62:7486.CrossRefGoogle Scholar
24.Huang, M.-D., Xiong, J.-J., and Du, T.-Y.. 1987. The selection for and genetical analysis of phosmet resistance in Amblyseius nicholsi. Acta Entomologica Sinica 30(2): 133139.Google Scholar
25.Huffaker, C. B., editor. 1971. Biological Control. Plenum Press, New York, New York. 511 pp.Google Scholar
26.Hull, L. A., and Beers, E. H.. 1985. Ecological selectivity: modifying chemical control practices to preserve natural enemies. In Hoy, M. A. and Herzog, D. C. (eds.). Biological Control in Agricultural IPM Systems. Academic Press, Orlando, Florida, pp. 103122.CrossRefGoogle Scholar
27.Hussey, N. W., and Scopes, N., editors. 1985. Biological Pest Control, The Glasshouse Experience. Cornell University Press, Ithaca, New York. 240 pp.Google Scholar
28.King, E. G., and Leppla, N. C., editors. 1984. Advances and Challenges in Insect Rearing. USDA, ARS (Southern Region), New Orleans, Louisiana. 305 pp.CrossRefGoogle Scholar
29.Laing, J. E., and Hamai, J.. 1976. Biological control of insect pests and weeks by imported parasites, predators and pathogens. In Huffaker, C. B. and Messenger, P. S. (eds.). Theory and Practice of Biological Control. Academic Press, New York, New York. pp. 685743.CrossRefGoogle Scholar
30.Landaluz, P. U. 1950. Aplicacion de la genetica al aumento de la eficacia del Trichogramma minutum en la lucha biologica. Bolet. Patol. Vegetal Entomol. Agric. 18:112.Google Scholar
31.Legner, E. F. 1987. Transfer of thelytoky to arrhenotokous Muscidifurax raptor Girault and Sanders (Hymenoptera: Pteromalidae). Canadian Entomologist 119:265271.CrossRefGoogle Scholar
32.Lewis, W. J., and Tumlinson, J. H.. 1988. Host detection by chemically mediated associative learning in a parasitic wasp. Nature 331:257259.CrossRefGoogle Scholar
33.Luck, R. F., Shepard, B. M., and Kenmore, P. E.. 1988. Experimental methods for evaluating arthropod natural enemies. Annual Review of Entomology 33:367391.CrossRefGoogle Scholar
34.Markwick, N. P. 1986. Detecting variability and selecting for pesticide resistance in two species of phytoseiid mites. Entomophaga 31:225236.CrossRefGoogle Scholar
35.Nordlund, D. A., Jones, R. L., and Lewis, W. J., editors. 1981. Semiochemicals, Their Role in Pest Control. W. J. Wiley, Chichester.Google Scholar
36.Pielou, D. P., and Glasser, F. R.. 1952. Selection for DDT resistance in a beneficial insect parasite. Science 115:117.CrossRefGoogle Scholar
37.Rabb, R. L., Stinner, R. E., and van den Bosch, R.. 1976. Conservation and augmentation of natural enemies. In Huffaker, C. B. and Messenger, P. S. (eds.). Theory and Practice of Biological Control. Academic Press, New York, New York. pp. 233254.CrossRefGoogle Scholar
38.Ram, A., and Sharma, A. K.. 1977. Selective breeding for improving the fecundity and sex ratio of Trichogramma fasciatum (Perkins) (Trichogrammatidae: Hymenoptera), an egg parasite of lepidopterous hosts. Entomology 2:133137.Google Scholar
39.Ridgway, R. L., and Vinson, S. B.. 1977. Biological Control by Augmentation of Natural Enemies. Plenum Press, New York, New York. 480 pp.CrossRefGoogle Scholar
40.Robertson, J. G. 1957. Changes in resistance to DDT in Macrocentrus ancylivorus Rohw. (Hymenoptera: Braconidae). Canadian Journal of Zoology 35:629633.Google Scholar
41.Rosenheim, J. A., and Hoy, M. A.. 1988. Genetic improvement of a parasitoid biological control agent: artificial selection for insecticide resistance in Aphytis melinus (Hymenoptera: Aphelinidae). Journal of Economic Entomology.CrossRefGoogle Scholar
42.Roush, R. T., and Hoy, M. A.. 1981. Genetic improvement of Metaseiulus occidentalis: selection with methomyl, dimethoate, and carbaryl and genetic analysis of carbaryl resistance. Journal of Economic Entomology 74:138141.CrossRefGoogle Scholar
43.Sailer, R. I. 1983. History of insect introductions. In Wilson, C. L. and Graham, C. L. (eds.). Exotic Plant Pests and North American Agriculture. Academic Press, New York, New York. pp. 1537.CrossRefGoogle Scholar
44. Schulten, G. G. M., and G. van de Klashorst. 1974. Genetics of resistance to parathion and demeton-s-methyl in Phytoseiulus persimilis. A. H. (Acari: Phytoseiidae). Proceedings 4th International Congress of Acarology. pp. 519524.Google Scholar
45.Simmonds, F. J. 1947. Improvement of the sex-ratio of a parasite by selection. Canadian Entomologist 79:4144.CrossRefGoogle Scholar
46.Strickler, K. A., and Croft, B. A.. 1982. Selection for permethrin resistance in the predatory mite Amblyseius fallacis Garman (Acarina: Phytoseiidae). Entomologia Experimentalis et Applicata 31:339345.CrossRefGoogle Scholar
47.Szmidt, A. 1972. Studies on the efficiency of various strains of the parasite Dahlbominus fuscipennis (Zett.) (Hymenoptera, Chalcidoidea) under natural condition. Ekol. Pol. 20:299313.Google Scholar
48.Tauber, M. J., Hoy, M. A., and Herzog, D. C.. 1985. Biological control in agricultural IPM systems: a brief overview of the current status and future prospects. In Hoy, M. A. and Herzog, D. C. (eds.). Biological Control in Agricultural IPM Systems. Academic Press, Orlando, Florida, pp. 39.CrossRefGoogle Scholar
49.Urquijo, P. 1946. Selecion des estirpes de Trichogramma minutum Riley de maxima effectividad parasitaria. Boln. Patol. Veg. Ent. Agric. 14:199216.Google Scholar
50.Voroshilov, H. V. 1979. Heat-resistant lines of the mite Phytoseiulus persimilis H.-H. Genetika 15(1):7076.Google Scholar
51.Voroshilov, N. V., and Kolmakova, L. I.. 1977. Heritability of fertility in a hybrid population of Phytoseiulus. Genetika 13(8):14961497.Google Scholar
52.Weseloh, R. M. 1986. Artificial selection for host suitability and developmental length of the gypsy moth (Lepidoptera: Lymantriidae) parasite, Cotesia melanoscela (Hymenoptera: Braconidae). J. Econ. Entomol. 79:12121216.CrossRefGoogle Scholar
53.White, E. B., DeBach, P., and Garber, M. J.. 1970. Artificial selection for genetic adaptation to temperature extremes in Aphytis lingnanensis Compere (Hymenoptera: Aphelinidae). Hilgardia 40(6):161192.CrossRefGoogle Scholar
54.Wilkes, A. 1942. The influence of selection on the preferendum of a chalcid (Microplectron fuscipennis Zett.) and its significance in the biological control of an insect pest. Proc. Royal Society London, Series B 130:400415.Google Scholar