Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T14:44:46.944Z Has data issue: false hasContentIssue false

Species interactions and community ecology in low external-input agriculture

Published online by Cambridge University Press:  30 October 2009

Stephen R. Gliessman
Affiliation:
Associate Professor, Board of Environmental Studies, and Director, Agroecology Program, University of California, Santa Cruz, CA 95064.
Get access

Abstract

Low external-input agriculture seeks to optimize interactions between species that permit processes at the ecological community level to shift inputs away from nonrenewable or synthetic sources. This goal can be reached through the study of the ecological basis of an array of plant-plant and plant-insect interactions, especially in intercropping systems where particular plant mixtures are of benefit to the entire crop community. These polyculture systems can be managed for nutrient cycling efficiency and pest and disease regulation using knowledge of multi-trophic level interactions and application of recent developments in mutualism and competition theory. A mechanistic model of additive and removal reactions on the environment is proposed as a means of studying species interactions.

Type
Articles
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Allen, P., and Van Dusen, D. (eds.). 1987. Global Perspectives on Agroecology and Sustainable Agriculture. University of California, Santa Cruz, California (In Press).Google Scholar
2.Altieri, M. A. 1987. Agroecology: The scientific basis of alternative agriculture. Westview Press, Boulder, Colorado.Google Scholar
3.Altieri, M. A., and Anderson, M. K.. 1986. An ecological basis for the development of alternative agricultural systems for small farmers in the Third World. Am. J. Alternative Agriculture 1(1):3038.Google Scholar
4.Altieri, M. A., and Liebman, M.. 1986. Insect, weed, and plant disease management in multiple cropping systems. In Francis, C. A. (ed.). Multiple Cropping Systems. MacMillan, New York, New York. Chap. 9.Google Scholar
5.Altieri, M. A., and Whitcomb, W. H.. 1979. The potential use of weeds in the manipulation of beneficial insects. HortScience 14:1218.Google Scholar
6.Altieri, M. A., van Schoonhoven, A., and Doll, J. D.. 1977. The ecological role of weeds in insect pest management: A review illustrated with bean (Phaseolus vulgaris) cropping systems. PANS 23:185205.Google Scholar
7.Amador, M. F. 1980. Comportamiento de tres especies (Maiz, Frijol, Calabaza) en policultivos en la Chontalpa, Tabasco, Mexico. Tesis Profesional, CSAT, Cardenas, Tabasco, Mexico.Google Scholar
8.Beets, W. C. 1982. Multiple cropping and tropical farming systems. Westview Press, Boulder, Colorado. 156 pp.Google Scholar
9.Boucher, D., and Espinosa, J.. 1982. Cropping systems and growth and nodulation responses of beans to nitrogen in Tabasco, Mexico. Trop. Agric. 59:279282.Google Scholar
10.Chacon, J. C., and Gliessman, S. R.. 1982. Use of the “non-weed” concept in traditional tropical agroeco-systems of southeastern Mexico. Agro-Ecosystems 8:111.CrossRefGoogle Scholar
11.Cox, G. W., and Atkins, M. D.. 1979. Agricultural ecology. Freeman, New York, New York. 397 pp.Google Scholar
12.Crossley, D. A. Jr., House, G. J., Snider, R. M., Snider, R. J., and Stinner, B. R.. 1984. Positive interactions in agroecosystems. In Lowrance, R., Stinner, B. R., and House, G. J., Agricultural Ecosystems. John Wiley & Sons, New York, New York. pp. 7382.Google Scholar
13.Francis, C. A. 1986. Multiple cropping systems. MacMillan, New York, New York. 382 pp.Google Scholar
14.Gliessman, S. R. 1982. Nitrogen distribution in several traditional agro-ecosystems in the humid tropical lowlands of south-eastern Mexico. Plant and Soil 67:105117.Google Scholar
15.Gliessman, S. R. 1983. Allelopathic interactions in crop-weed mixtures: Applications for weed management. Journal of Chemical Ecology 9:991999.CrossRefGoogle ScholarPubMed
16.Gliessman, S. R. 1984. An agroecological approach to sustainable agriculture. In Jackson, W., Berry, W., and Colman, B. (eds.). Meeting the Expectations of the Land. Northpoint Press, Berkeley, California, pp. 160171.Google Scholar
17.Gliessman, S. R. 1986a. The ecological element in farm management. In Univ. California (ed.). Proceedings of a Conference on Sustainability of California Agriculture. U.C. Davis.Google Scholar
18.Gliessman, S. R. 1986b. Plant interactions in multiple cropping systems. In Francis, C. A. (ed.). Multiple Cropping Systems. MacMillan, New York, New York. Chap. 5.Google Scholar
19.Gliessman, S. R., and Altieri, M. A.. 1982. Polyculture cropping has advantages. California Agriculture 36:1417.Google Scholar
20.Gliessman, S. R., Garcia E., R., and Amador A., M. 1981. The ecological basis for the application of traditional agricultural technology in the management of tropical agroecosystems. Agro-Ecosystems 7:173185.CrossRefGoogle Scholar
21.Harper, J. L. 1961. Approaches to the study of plant competition. In F. L. Milthorte (ed.). Mechanisms in Biological Competition. Symp. Soc. Exp. Biol. 15:139.Google Scholar
22.Harper, J. L. 1964. The nature and consequences of interference amongst plants. Proc. XI International Cong. Genet. 2:465482.Google Scholar
23.Harper, J. L. 1977. Population biology of plants. Academic Press. 892 pp.Google Scholar
24.Hart, R. D. 1984. Agroecosystem determinants. In Lowrance, R., Stinner, B. R., and House, G. J. (eds.). Agricultural Ecosystems: Unifying Concepts. John Wiley & Sons, New York, New York. pp. 105119.Google Scholar
25.Hart, R. D. 1986. Ecological framework for multiple cropping research. In Francis, C. A. (ed.). Multiple Cropping Systems. MacMillan, New York, New York. Chap. 3.Google Scholar
26.Harwood, R. R. 1979. Small farm development. Westview Press, Boulder, Colorado. 160 pp.Google Scholar
27.Hill, T. A. 1977. The biology of weeds. Arnold, London. Chap. 1.Google Scholar
28. ICRISAT (International Crop Research Institute for the Semi-Arid Tropics). 1981. Proceedings of the International Workshop on Intercropping, 10–13 January, 1979, Hyderabad, India. 401 pp.Google Scholar
29.Jimenez-Osornio, J. J. 1984. Interactions in a wild mustard and broccoli intercrop agroecosystem. M. A. Thesis, Biology, University of California, Santa Cruz.Google Scholar
30.Jimenez-Osornio, J. J., and Gliessman, S. R.. 1987. Allelopathic interference in a wild mustard (Brassica campestris L.) and broccoli (Brassica oleracea L. var. italica) intercrop agroecosystem. In G. R. Waller (ed.). Allelochemicals: Role in Agriculture and Forestry. ACS Symposium Series 330:262274.Google Scholar
31.Letourneau, D. 1983. Population dynamics of insect pests and natural control in traditional agroecosystems in tropical Mexico. Ph.D. Dissertation, University of California, Berkeley.Google Scholar
32.Linn, L. 1984. The effects of Sperqula arvensis borders on aphids and their natural enemies in Brussels sprouts. M. A. Thesis, Biology, University of California, Santa Cruz.Google Scholar
33.Lovett, J. V., and Duffield, A. M.. 1981. Allelochemicals of Comelina sativa. J. Appl. Ecol. 18:283290.CrossRefGoogle Scholar
34.Lowrance, R., Stinner, B. R., and House, G. J.. 1984. Agricultural ecosystems: Unifying concepts. Wiley, New York, New York. 257 pp.Google Scholar
35.Muller, C. H. 1969. Allelopathy as a factor in ecological process. Vegetatio 18:348357.Google Scholar
36.Odum, E. P. 1983. Fundamentals of ecology (4 ed.). Saunders Co., Philadelphia, Pennsylvania. 542 pp.Google Scholar
37.Price, P. W. 1984. Alternative paradigms in community ecology. In Price, P. W., Slobodchikoff, C. N., and Gaud, W. S. (eds.). A New Ecology. Novel Approaches to Interactive Systems. John Wiley & Sons, New York, New York. pp. 353383.Google Scholar
38.Putnam, A. R., and DeFrank, J.. 1983. Use of phytotoxic plant residues for selective weed control. Crop Protection 2:173181.Google Scholar
39.Risch, S. 1980. The population dynamics of several herbivorous beetles in a tropical agroecosystem: The effect of intercropping corn, beans and squash in Costa Rica. J. Appl. Ecol. 17:593612.Google Scholar
40.Ruiz, O. 1984. Effects of weed borders on the dynamics of insect communities in a cauliflower agroecosystem. M. A. Thesis, Biology, University of California, Santa Cruz.Google Scholar
41.Strong, D. R., Lawton, J. H., Southwood, R.. 1984. Insects on plants. Harvard University Press, Cambridge, Massachusetts. 313 pp.Google Scholar
42.Theunissen, J., and van Duden, H.. 1980. Effects of intercropping with Sperqula arvensis on pests of Brussels sprouts. Ent. Exp. & Appl. 27:260268.Google Scholar
43.Tinnin, R. O. 1972. Interference or competition? Amer. Nat. 106:672675.Google Scholar
44.Trenbath, B. R. 1976. Plant interactions in mixed crop communities. In ASA (American Society of Agronomy), Amer. Soc. Agron. Spec. Pubi. 27:129169.Google Scholar
45.USDA. 1938. Soils and men. Yearbook of Agriculture, USDA, Washington, DC. Chap. 1.Google Scholar
46.Vandermeer, J., Gliessman, S. R., Yih, K., and Amador, M.. 1983. Over-yielding in a corn-cowpea system in southern Mexico. Biol. Agric. & Hort. 1:8396.Google Scholar