Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T13:43:58.303Z Has data issue: false hasContentIssue false

STABLE OXYGEN ISOTOPE SOURCING OF ARCHAEOLOGICAL FAUNA FROM CHACO CANYON, NEW MEXICO

Published online by Cambridge University Press:  16 November 2017

Marian I. Hamilton*
Affiliation:
Department of Anthropology, University of New Mexico, MSC01-1040, Albuquerque, NM 87131-1086, USA
B. Lee Drake
Affiliation:
Department of Anthropology, University of New Mexico, MSC01-1040, Albuquerque, NM 87131-1086, USA
W. H. Wills
Affiliation:
Department of Anthropology, University of New Mexico, MSC01-1040, Albuquerque, NM 87131-1086, USA
Emily Lena Jones
Affiliation:
Department of Anthropology, University of New Mexico, MSC01-1040, Albuquerque, NM 87131-1086, USA
Cyler Conrad
Affiliation:
Department of Anthropology, University of New Mexico, MSC01-1040, Albuquerque, NM 87131-1086, USA
Patricia L. Crown
Affiliation:
Department of Anthropology, University of New Mexico, MSC01-1040, Albuquerque, NM 87131-1086, USA
*
([email protected], corresponding author)

Abstract

Modern datasets provide the context necessary for accurate interpretations of isotopic data from archaeological faunal assemblages. In this study, we use the oxygen isotope ratios (δ18O) of modern small mammals from Chaco Canyon, New Mexico, to quantify expected isotopic variation in a local population. The δ18O values of local, modern small mammals encompass a broad range (−6.0‰ to 4.8‰ VPDB), which is expected given the extreme seasonal variation in the δ18O of precipitation on the Colorado Plateau (−11‰ to −3‰ VPDB). Isotopic ratios of small mammals obtained from excavated archaeological sites in Chaco Canyon (ca. AD 800 to 1200) show no significant differences with their modern counterparts, suggesting that there is no difference in the origins of the archaeological small-mammal collection and the modern, local Chaco Canyon small-mammal collection. In contrast, δ18O values of large mammals from Chaco archaeological sites are significantly different from those of modern specimens, reflecting a nonlocal, but also nonspecific, source in the past.

Los datos isotópicos de los animales modernos pueden proporcionar información importante para la interpretación de los datos isotópicos procedentes de conjuntos faunísticos arqueológicos. En este estudio utilizamos las proporciones de isótopos de oxígeno (δ18O) de pequeños mamíferos modernos en Chaco Canyon, Nuevo México, para cuantificar la variación esperada para una única población local. El rango de valores de δ18O de los pequeños mamíferos locales en Chaco Canyon es amplio (-6,0‰ a 4,8‰ VPDB). Esto no es sorprendente, dada la considerable variación estacional de δ18O ligada a la precipitación en la meseta del Río Colorado (-11‰ a -3‰ VPDB). Las proporciones isotópicas de los pequeños mamíferos arqueológicos procedentes de los sitios excavados en Chaco Canyon (ca. 800–1200 dC) no difieren de manera significativa de las de los animales modernos. Esto sugiere que no hay diferencias de procedencia entre la colección arqueológica de pequeños mamíferos y los mamíferos locales modernos de Chaco Canyon. En cambio, los valores de δ18O de los mamíferos grandes de los sitios arqueológicos de la zona son muy distintos de los valores de mamíferos grandes modernos. Esto sugiere que los especímenes de mamíferos grandes arqueológicos tienen origen diferente y no local, aunque no especulamos sobre dónde pudo haber sido ese lugar.

Type
Reports
Copyright
Copyright © 2017 by the Society for American Archaeology 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Akins, Nancy J. 1984 Temporal Variation in Faunal Assemblages from Chaco Canyon. In Recent Research on Chaco Prehistory, edited by Schelberg, John D. and Judge, W. James, pp. 225240. Reports of the Chaco Center No. 8. National Park Service, Albuquerque, New Mexico.Google Scholar
Akins, Nancy J. 1985 Prehistoric Faunal Utilization in Chaco Canyon: Basketmaker III through Pueblo III. In Environment and Subsistence of Chaco Canyon, New Mexico, edited by Joan Mathien, Frances, pp. 305446. Publications in Archeology 18E. National Park Service, Albuquerque, New Mexico.Google Scholar
Akins, Nancy J. 1987 Faunal Remains from Pueblo Alto. In Investigations at the Pueblo Alto Complex, Chaco Canyon, New Mexico 1975–1979, Volume III: Artifactual and Biological Analyses, edited by Joan Mathien, Frances and Windes, Thomas C., pp. 445649. Chaco Canyon Studies Publications in Archeology 18F. National Park Service, Santa Fe, New Mexico.Google Scholar
Alley, Richard B. 2004 Implications of Abrupt Climate Change. Transactions of the American Clinical and Climatological Association 115:305.Google ScholarPubMed
Ambach, W., Dansgaard, Willi, Eisner, H., and Møller, J. 1968 The Altitude Effect on the Isotopic Composition of Precipitation and Glacier Ice in the Alps. Tellus 20:595600.CrossRefGoogle Scholar
Asmerom, Yemane, Polyak, Victor, Burns, Stephen, and Rassmussen, Jessica 2007 Solar Forcing of Holocene Climate: New Insights from a Speleothem Record, Southwestern United States. Geology 35:14.CrossRefGoogle Scholar
Ayliffe, Linda, and Chivas, Alan 1990 Oxygen Isotope Composition of the Bone Phosphate of Australian Kangaroos: Potential as a Palaeoenvironmental Recorder. Geochimica et Cosmochimica Acta 54:26032609.CrossRefGoogle Scholar
Badenhorst, Shaw, Driver, Jonathan, and Maxwell, David 2016 Pueblo Bonito Fauna. In The Pueblo Bonito Mounds of Chaco Canyon: Material Culture and Fauna, edited by Crown, Patricia L., pp. 189212. University of New Mexico Press, Albuquerque.Google Scholar
Benson, Larry 2010 Who Provided Maize to Chaco Canyon after the Mid-12th Century Drought? Journal of Archaeological Science 37:621629.CrossRefGoogle Scholar
Benson, Larry 2011 Factors Controlling Pre-Columbian and Early Historic Maize Productivity in the American Southwest, Part 2: The Chaco Halo, Mesa Verde, Pajarito Plateau/Bandelier, and Zuni Archaeological Regions. Journal of Archaeological Method and Theory 18: 61109.CrossRefGoogle Scholar
Benson, Larry 2016 The Chuska Slope as an Agricultural Alternative to Chaco Canyon: A Rebuttal of Tankersley et al. (2016). Journal of Archaeological Science: Reports. doi:10.1016/j.jasrep.2016.10.017.Google Scholar
Benson, Larry, Cordell, Linda S., Vincent, Kirk, Taylor, Howard, Stein, John, Lang Farmer, G., and Futa, Kiyoto 2003 Ancient Maize from Chacoan Great Houses: Where Was It Grown? Proceedings of the National Academy of Science 100:1311113115.CrossRefGoogle ScholarPubMed
Benson, Larry V., Hattori, Eugene M., Taylor, Howard E., Poulson, Simon R., and Jolie, Ed A. 2006 Isotope Sourcing of Prehistoric Willow and Tule Textiles Recovered from Western Great Basin Rock Shelters and Caves—Proof of Concept. Journal of Archaeological Science 33:15881599.CrossRefGoogle Scholar
Betancourt, Julio L., and Van Devender, Thomas R. 1981 Holocene Vegetation in Chaco Canyon, New Mexico. Science 214:656658.CrossRefGoogle ScholarPubMed
Bowen, Gabriel J., and Wilkinson, Bruce 2002 Spatial Distribution of δ18O in Meteoric Precipitation. Geology 30:315318.2.0.CO;2>CrossRefGoogle Scholar
Bryant, J. Daniel, and Froelich, Phillip N. 1995 A Model of Oxygen Isotope Fractionation in Body Water of Large Mammals. Geochimica et Cosmochimica Acta 59:45234537.CrossRefGoogle Scholar
Buzon, Michele R., Conlee, Christina A., and Bowen, Gabriel J. 2011 Refining Oxygen Isotope Analysis in the Nasca Region of Peru: An Investigation of Water Sources and Archaeological Samples. International Journal of Osteoarchaeology 21:446455.CrossRefGoogle Scholar
Cannon, Michael D. 2003 A Model of Central Place Forager Prey Choice and an Application to Faunal Remains from the Mimbres Valley, New Mexico. Journal of Anthropological Archaeology 22:125.CrossRefGoogle Scholar
Chamberlain, C. Page, and Poage, Michael A. 2000 Reconstructing the Paleotopography of Mountain Belts from the Isotopic Composition of Authigenic Minerals. Geology 28:115118.2.0.CO;2>CrossRefGoogle Scholar
Crown, Patricia L. (editor) Forthcoming The House of the Cylinder Jars: Room 28 in Pueblo Bonito, Chaco Canyon. Copies available from the Department of Anthropology, University of New Mexico, Albuquerque.Google Scholar
Diamond, Jared 2005 Collapse: How Societies Choose to Fail or Succeed. Penguin, New York.Google Scholar
Drake, Brandon Lee, Wills, W. H., Hamilton, Marian I., and Dorshow, Wetherbee 2014 Strontium Isotopes and the Reconstruction of the Chaco Regional System: Evaluating Uncertainty with Bayesian Mixing Models. PLoS One 9:e95580. doi:10.1371/journal.pone.0095580.CrossRefGoogle ScholarPubMed
Driver, Jonathan C. 2002 Faunal Variation and Change in the Northern San Juan Region. In Seeking the Center Place: Archaeology and Ancient Communities in the American Southwest, edited by Varien, Mark D. and Wilshusen, Richard H., pp. 143160. University of Utah Press, Salt Lake City.Google Scholar
Dutton, Andrea, Wilkinson, Bruce H., Welker, Jeffrey M., Bowen, Gabriel J., and Lohmann, Kyger C. 2005 Spatial Distribution and Seasonal Variation in 18O/16O of Modern Precipitation and River Water across the Conterminous USA. Hydrological Processes 19:41214146.CrossRefGoogle Scholar
English, Nathan B., Betancourt, Julio L., Dean, Jeffrey S., and Quade, Jay 2001 Strontium Isotopes Reveal Distant Sources of Architectural Timber in Chaco Canyon, New Mexico. Proceedings of the National Academy of Science 98:1189111896.CrossRefGoogle ScholarPubMed
Epstein, Samuel, and Mayeda, Toshiko 1953 Variation of O18 Content of Waters from Natural Sources. Geochimica et Cosmochimica Acta 4: 213224.CrossRefGoogle Scholar
Evans, Jane, Chenery, Carolyn, and Fitzpatrick, Andrew P. 2006 Bronze Age Childhood Migration of Individuals near Stonehenge, Revealed by Strontium and Oxygen Isotope Tooth Enamel Analysis. Archaeometry 48:309321.CrossRefGoogle Scholar
Gonfiantini, Roberto, Roche, Michel-Alain, Olivry, Jean-Claude, Fontes, Jean-Charles, and Maria Zuppi, Gian 2001 The Altitude Effect on the Isotopic Composition of Tropical Rains. Chemical Geology 181:147167.CrossRefGoogle Scholar
Grimstead, Deana N., Buck, Sharron M., Vierra, Brad J., and Benson, Larry V. 2015 Another Possible Source of Archaeological Maize Found in Chaco Canyon, NM: The Tohatchi Flats Area, NM, USA. Journal of Archaeological Science: Reports 3:181187.Google Scholar
Grimstead, Deana N., Quade, Jay, and Stiner, Mary C. 2016 Isotopic Evidence for Long-Distance Mammal Procurement, Chaco Canyon, New Mexico, USA. Geoarchaeology: An International Journal 31: 335354.CrossRefGoogle Scholar
Guiterman, Christopher H., Swetnam, Thomas W., and Dean, Jeffrey S. 2016 Eleventh-Century Shift in Timber Procurement Areas for the Great Houses of Chaco Canyon. Proceedings of the National Academy of Sciences 113:11861190.CrossRefGoogle ScholarPubMed
Hoy, Roberta N., and Wolfgang Gross, Gerardo 1982 Baseline Study of Oxygen 18 and Deuterium in the Roswell, New Mexico, Groundwater Basin. No. PB-83-173302. New Mexico Water Resources Research Institute, New Mexico State University, Las Cruces.Google Scholar
Huertas, Antonio Delgado, Iacumin, Paola, Stenni, Barbara, Sánchez Chillón, Begoña, and Longinelli, Antonio 1995 Oxygen Isotope Variations in Mammal Bone and Tooth Enamel. Geochimica et Cosmochimica Acta 59:42994305.CrossRefGoogle Scholar
Iacumin, Paola, and Longinelli, Antonio 2002 Relationship between δ18O Values for Skeletal Apatite from Reindeer and Foxes and Yearly Mean δ18O Values of Environmental Water. Earth and Planetary Science Letters 201:213219.CrossRefGoogle Scholar
Knudson, Kelly J., Williams, Hope M., Buikstra, Jane E., Tomczak, Paula D., Gordon, Gwenyth W., and Anbar, Ariel D. 2010 Introducing δ88/86Sr Analysis in Archaeology: A Demonstration of the Utility of Strontium Isotope Fractionation in Paleodietary Studies. Journal of Archaeological Science 37:23522364.CrossRefGoogle Scholar
Kohn, Matthew J. 1996 Predicting Animal δ18O: Accounting for Diet and Physiological Adaptation. Geochimica et Cosmochimica Acta 60:48114829.CrossRefGoogle Scholar
Kohn, Matthew J., Schoeninger, Margaret J., and Valley, John W. 1996 Herbivore Tooth Oxygen Isotope Compositions: Effects of Diet and Physiology. Geochimica et Cosmochimica Acta 60:38893896.CrossRefGoogle Scholar
Lee-Thorp, Julia, and Sponheimer, Matt 2003 Three Case Studies Used to Reassess the Reliability of Fossil Bone and Enamel Isotope Signals for Paleodietary Studies. Journal of Anthropological Archaeology 22:208216.CrossRefGoogle Scholar
Lekson, Stephen H. 2006 Chaco Matters: An Introduction. In The Archaeology of Chaco Canyon: An Eleventh-Century Pueblo Regional Center, edited by Lekson, Stephen H., pp. 344. School of American Research Press, Santa Fe, New Mexico.Google Scholar
Lightfoot, Emma, and O'Connell, Tamsin C. 2016 On the Use of Biomineral Oxygen Isotope Data to Identify Human Migrants in the Archaeological Record: Intra-sample Variation, Statistical Methods and Geographical Considerations. PloS ONE 11:e0153850. doi:10.1371/journal.pone.0153850.CrossRefGoogle ScholarPubMed
Liu, Zhongfang, Bowen, Gabriel J., and Welker, Jeffery M. 2010 Atmospheric Circulation Is Reflected in Precipitation Isotope Gradients over the Conterminous United States. Journal of Geophysical Research: Atmospheres 115:D22120. doi:10.1029/2010JD014175.CrossRefGoogle Scholar
McCarroll, Danny, and Loader, Niel J. 2004 Stable Isotopes in Tree Rings. Quaternary Science Reviews 23:771801.CrossRefGoogle Scholar
Pellegrini, Maura, and Snoeck, Christophe 2016 Comparing Bioapatite Carbonate Pre-treatments for Isotopic Measurements: Part 2—Impact on Carbon and Oxygen Isotope Compositions. Chemical Geology 420:8896.CrossRefGoogle Scholar
Pepper, George 1920 Pueblo Bonito. Anthropological Papers of the American Museum of Natural History Vol. XXVII. American Museum of Natural History, New York.Google Scholar
Podlesak, David W., Torregrossa, Ann-Marie, Ehle- ringer, James R., Denise Dearing, M., Passey, Ben H., and Cerling, Thure E. 2008 Turnover of Oxygen and Hydrogen Isotopes in the Body Water, CO2, Hair, and Enamel of a Small Mammal. Geochimica et Cosmochimica Acta 72:1935.CrossRefGoogle Scholar
Potter, James M., and Ortman, Scott G. 2004 Community and Cuisine in the Prehistoric Southwest. In Identity, Feasting and the Archaeology the Greater Southwest, edited by Mills, Barbara J., pp. 173191. University Press of Colorado, Boulder.Google Scholar
Reynolds, Amanda C., Betancourt, Julio L., Quade, Jay, Jonathan Patchett, P., Dean, Jeffrey S., and Stein, John 2005 87Sr/86Sr Sourcing of Ponderosa Pine Used at Anasazi Great House Construction in Chaco Canyon, New Mexico. Journal of Archaeological Science 32:10611075.CrossRefGoogle Scholar
Royer, Aurélien, Lécuyer, Christophe, Montuire, Sophie, Amiot, Romain, Legendre, Serge, Cuenca-Bescós, Gloria, Jeannet, Marcel, and Martineau, Francois 2013 What Does the Oxygen Isotope Composition of Rodent Teeth Record? Earth and Planetary Science Letters 361:258271.CrossRefGoogle Scholar
Rubenstein, Dustin R., and Hobson, Keith A. 2004 From Birds to Butterflies: Animal Movement Patterns and Stable Isotopes. Trends in Ecology and Evolution 19:256263.CrossRefGoogle ScholarPubMed
Speth, John D., and Scott, Susan L. 1989 Horticulture and Large-Mammal Hunting: The Role of Resource Depletion and the Constraints of Time and Labor. In Farmers and Hunters: The Implications of Sedentism, edited by Kent, Susan, pp. 7179. Cambridge University Press, Cambridge.Google Scholar
Stahle, David W., Cleaveland, Malcolm K., Grissino-Mayer, Henri D., Griffin, Rachel D., Fye, Falko K., Therrell, Mathew D., Burnette, Dorian J., Meko, David M., and Diaz, Jose V. 2009 Cool- and Warm-Season Precipitation Reconstructions over Western New Mexico. Journal of Climate 22:37293750.CrossRefGoogle Scholar
Szuter, Christine R., and Gillespie, William B. 1994 Interpreting Use of Animal Resources at Prehistoric American Southwest Communities. In The Ancient Southwest Community: Models and Methods for the Study of Prehistoric Social Organization, edited by Wills, W. H. and Leonard, Robert D., pp. 6776. University of New Mexico Press, Albuquerque.Google Scholar
Vivian, R. Gwinn, Van West, Carla R., Dean, Jeffrey S., Akins, Nancy J., Toll, Mollie S., and Windes, Thomas C. 2006 Ecology and Economy. In The Archaeology of Chaco Canyon: An Eleventh-Century Pueblo Regional Center, edited by Lekson, Stephen H., pp. 4566, 429–458. School of American Research Press, Santa Fe, New Mexico.Google Scholar
Watson, Adam Stewart 2012 Craft, Subsistence, and Political Change: An Archaeological Investigation of Power and Economy in Prehistoric Chaco Canyon, New Mexico, 850 to 1200 CE. PhD dissertation, Department of Anthropology, University of Virginia, Charlottesville.Google Scholar
Webb, Emily C., White, Christine D., and Longstaffe, Fred J. 2013 Exploring Geographic Origins at Cahuachi Using Stable Isotopic Analysis of Archaeological Human Tissues and Modern Environmental Waters. International Journal of Osteoarchaeology 23:698715.CrossRefGoogle Scholar
West, Jason B., Sobek, Adam, and Ehleringer, James R. 2008 A Simplified GIS Approach to Modeling Global Leaf Water Isoscapes. PLoS One 3:e2447. doi:10.1371/journal.pone.0002447.CrossRefGoogle ScholarPubMed
Williams, D. G., Coltrain, Joan B., Lott, M., English, Nathan B., and Ehleringer, Jim R. 2005 Oxygen Isotopes in Cellulose Identify Source Water for Archaeological Maize in the American Southwest. Journal of Archaeological Science 32:931939.CrossRefGoogle Scholar
Wills, W. H., Lee Drake, Brandon, and Dorshow, Wetherbee B. 2014 Prehistoric Deforestation at Chaco Canyon? Proceedings of the National Academy of Science 111:1158411591.CrossRefGoogle ScholarPubMed
Yapp, Crayton J. 1985 D/H Variations of Meteoric Waters in Albuquerque, New Mexico, U.S. Journal of Hydrology 76:6384.CrossRefGoogle Scholar