Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T13:53:33.594Z Has data issue: false hasContentIssue false

Stable Isotope Evidence for Maize Horticulture and Paleodiet in Southern Ontario, Canada

Published online by Cambridge University Press:  20 January 2017

M. Anne Katzenberg
Affiliation:
Department of Archaeology, University of Calgary, Calgary, Alberta T2N 1N4
Henry P. Schwarcz
Affiliation:
Department of Geology, McMaster University, Hamilton, Ontario L8S 4M1
Martin Knyf
Affiliation:
Department of Geology, McMaster University, Hamilton, Ontario L8S 4M1
F. Jerome Melbye
Affiliation:
Department of Anthropology, Erindale Campus/University of Toronto, Mississauga, Ontario L5L 1C6

Abstract

This paper reports new data on stable carbon and nitrogen isotopes obtained from human skeletal remains found at six prehistoric sites dating between A.D. 400 and 1500 in southern Ontario. Analyses examine more closely the timing and intensity of maize adoption and the importance of animal protein in the diet, adding to earlier work in the region by the same authors (Schwarcz et al. 1985). As a result of changes in preferred methods of extracting bone collagen, a comparison of extraction methods is presented. Results indicate a gradual increase in the importance of maize in the diet over a period of approximately 600 years, from A.D. 650 to 1250, and little change in nitrogen isotope values during the same period. The results are considered within the larger temporal and geographical framework of eastern North America, drawing on stable isotope results from the published literature. Both paleobotanical and isotope data indicate marked differences in the timing and intensity of maize utilization in different regions of northeastern North America. Nitrogen isotope values decrease after around A.D. 1350, suggesting a decrease in animal protein in the diet. Stable isotope data provide one source of evidence for changes in human subsistence patterns and their interpretation relies on complementary data from sources such as the analysis of faunal and botanical remains, settlement patterns, and material culture.

Resumen

Resumen

Resultados de los análisis de carbón e isótopos de nitrógeno obtenidos de restos humaños procedentes de seis sitios arqueológicos del sur de Ontario que datan entre 400 y 1500 D.C. se presentan en este trabajo. Dichos análisis evaluan cuidadosamente el tiempo e intensidad de la adopción del maίz y la importancia de la proteina animal en la subsistencia, añadiendo de este modo nueva información a previos estudios realizados por los autores (Schwarcz et al. 1985). Como resultado de los cambios en los métodos preferidos para extraer colágeno de hueso, una comparación de los métodos de extracción se presenta. Nuestros resultados sugieren un incremento gradual de la importancia del maίz en la dieta entre un perίodo aproximadamente de 600 años, de 650 a 1250 D.C. Los valores de isótopos de nitrógeno muestran un insignificante cambio durante el tiempo en consideración. Los resultados son discutidos dentro del marco geográfico y temporal más amplio del este de Norte America, teniendo en consideración estudios similares ya publicados. Datos tanto paleobotánicos como de isótopos indican a su vez marcadas diferencias en el perίodo e intensidad de la utilization del maiz en las diferentes regiones del noreste norteamericano. Los valores de isótopo de nitrógeno disminuyen después de 1350 D.C, lo que sugiere un decrecimiento de la proteina animal en la dieta. Datos de isótopo ofrecen una Fuente de evidencia para determinar cambios en los patrones de subsistencia y su interpretación depende de información complementaria de otras fuentes tales como los análisis de los restos de plantas y animates, patrones de asentamiento y cultural material.

Type
Reports
Copyright
Copyright © The Society for American Archaeology 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Ambrose, S. H. 1987 Chemical and Isotopic Techniques of Diet Reconstruction in Eastern North America. In Emergent Horticultural Economies of the Eastern Woodlands, edited by F. Keegan, William, pp. 87107. Occasional Paper No. 7. Center for Archaeological Investigations, Southern Illinois University, Carbondale.Google Scholar
Ambrose, S. H. 1990 Preparation and Characterization of Bone and Tooth Collagen for Isotopic Analysis. Journal of Archaeological Science 17 : 431451.CrossRefGoogle Scholar
Ambrose, S. H. 1991 Effects of Diet, Climate and Physiology on Nitrogen Isotope Abundances in Terrestrial Foodwebs. Journal of Archaeological Science 18 : 293317.Google Scholar
Ambrose, S. H. 1993 Isotopic Analysis of Paleodiets : Methodological and Interpretive Considerations. In Investigations of Ancient Human Tissue : Chemical Analyses in Anthropology, edited by Sandford, M. K., pp. 59130. Gordon and Breach Science Publishers, Langhorne, Pennsylvania.Google Scholar
Ambrose, S. H., and Norr, L. 1993 Experimental Evidence for the Relationship of the Carbon Isotope Ratios of Whole Diet and Dietary Protein to Those of Bone Collagen and Carbonate. In Prehistoric Human Bone : Archaeology at the Molecular Level, edited by Lambert, J. B. and Grape, G., pp. 138. Springer-Verlag, Berlin.Google Scholar
Bender, M. M., Baerreis, D. A., and Steventon, A. L. 1981 Further Light on Carbon Isotopes and Hopewell Agriculture. American Antiquity 46 : 346353.CrossRefGoogle Scholar
Bornstein, P., and Piez, K. A. 1964 A Biochemical Study of Human Skin Collagen and the Relation Between Intra-and Inter-molecular Cross-linking. Journal of Clinical Investigation 43 : 18131823.CrossRefGoogle Scholar
Boutton, T. W., Klein, P. D., Lynott, M. J., Price, J. E., and Tieszen, L. L. 1984 Stable Carbon Isotope Ratios as Indicators of Prehistoric Human Diet. In Stable Isotopes in Nutrition, edited by Turnlund, J. R. and Johnson, P. E., pp. 191204. Symposium Series 258. American Chemical Society, Washington, D. C. CrossRefGoogle Scholar
Boutton, T. W., Lynott, M. J., and Bumsted, P. M. 1991 Stable Carbon Isotopes and the Study of Prehistoric Human Diet. Critical Renews in Food Science and Nutrition 30(3) : 373385.CrossRefGoogle Scholar
Buikstra, J. E., Autry, W., Breitburg, E., Eisenberg, L., and van der Merwe, N. 1988 Diet and Health in the Nashville Basin : Human Adaptation and Maize Agriculture in Middle Tennessee. In Diet and Subsistence : Current Archaeological Perspectives, Proceedings of the Nineteenth Annual Chacmool Conference, edited by Kennedy, B. V. and LeMoine, G. M., pp. 243259. University of Calgary Archaeological Association, Calgary, Alberta.Google Scholar
Buikstra, J. E., and Milner, G. R. 1991 Isotopic and Archaeological Interpretations of Diet in the Central Mississippi Valley. Journal of Archaeological Science 18 : 319329.CrossRefGoogle Scholar
Bumsted, M. P. 1984 Human Variation : 3C in Adult Bone Collagen and the Relation to Diet in an Isochronous C4 (Maize) Archaeological Population. Los Alamos National Laboratory, Los Alamos, New Mexico.Google Scholar
Chisholm, B. S., Nelson, D. E., and Schwarcz, H. P. 1982 Stable Carbon Isotope Ratios as a Measure of Marine Versus Terrestrial Protein in Ancient Diets. Science 216 : 11311132.Google Scholar
Cohen, M. N., and Armelagos, G. J. 1984 Paleopathology at the Origins of Agriculture. Academic Press, Orlando, Florida.Google Scholar
Cybulski, J. S. 1968 Analysis of the Skeletal Remains from the Surma Site, Fort Erie, Ontario. Ontario Archaeology 11 : 826.Google Scholar
Decker, K. W., and Tieszen, L. L. 1989 Isotopic Reconstruction of Mesa Verde Diet from Basketmaker III to Pueblo III. The Kiva 55(1) : 3317.Google Scholar
DeNiro, M. H. 1985 Postmortem Preservation and Alteration of In Vivo Bone Collagen Isotope Ratios in Relation to Palaeodietary Reconstruction. Nature 317 : 806809.Google Scholar
DeNiro, M. J., and Epstein, S. 1978 Influence of Diet on the Distribution of Carbon Isotopes in Animals. Geochimica et Cosmochimica Acta 42 : 495506.CrossRefGoogle Scholar
DeNiro, M. J., and Epstein, S. 1981 Influence of Diet on the Distribution of Nitrogen Isotopes in Animals. Geochimica et Cosmochimica Acta 45 : 341351.Google Scholar
DeNiro, M. J., and Schoeninger, M. J. 1983 Stable Carbon and Nitrogen Isotope Ratios of Bone Collagen : Variations within Individuals, between Sexes, and within Populations Raised on Monotonous Diets. Journal of Archaeological Science 10 : 199203.Google Scholar
Emerson, J. N., and Noble, W. C. 1966 The Surma site, Fort Erie, Ontario. Ontario Archaeology 9 : 6888.Google Scholar
Ezzo, J. A. 1993 Human Adaptation at Grasshopper Pueblo, Arizona : Social and Ecological Perspectives. International Monographs in Prehistory, Archaeological Series 4. Ann Arbor.Google Scholar
Farrow, D. C. 1986 A Study of Monongahela Subsistence Patterns Based on Mass Spectrometry Analysis. Midcontinental Journal of Archaeology 11 (2) : 153179.Google Scholar
Fogel, M., Tuross, N., and Owsley, D. W. 1989 Nitrogen Isotope Tracers of Human Lactation in Modern and Archaeological Populations. In Annual Report of the Director, pp. 111117. Geophysical Laboratory, Carnegie Institution, Washington, D. C. Google Scholar
Ford, R. I. 1985 The Processes of Plant Food Production in Prehistoric North America. In Prehistoric Food Pro-\ / duction in North America, edited by Ford, R. I., pp. 118. Anthropological Papers No. 75. Museum of Anthropology, University of Michigan, Ann Arbor.CrossRefGoogle Scholar
Fox, W. 1980 Southwestern Ontario Radio-Carbon Dates II. Kewa : Newsletter of the London Chapter, Ontario Archaeological Society 6 : 57.Google Scholar
Fox, W. A. 1985 The Culture History of Long Point : An Interim Report. Kewa : Newsletter of the London Chapter, Ontario Archaeological Society 2 : 922.Google Scholar
Fox, W. A., and Molto, J. E. 1994 A Special Child : The Monarch Knoll Burial. Midcontinental Journal of Archaeology 19(1) : 99136.Google Scholar
Francey, R. J., and Farquhar, G. D. 1982 An Explanation of, 3C/2C Variations in Tree Rings. Nature 297 : 28-31.CrossRefGoogle Scholar
Katzenberg, M. A. 1984 Chemical Analysis of Prehistoric Human Bone from Five Temporally Distinct Populations in Southern Ontario. Mercury Series Paper No. 129, Archaeological Survey of Canada. National Museum of Man, National Museums of Canada, Ottawa.Google Scholar
Katzenberg, M. A. 1989 Stable Isotope Analysis of Archaeological Faunal Remains from Southern Ontario. Journal of Archaeological Science 16 : 319329.Google Scholar
Katzenberg, M. A. 1992a Advances in Stable Isotope Analysis of Prehistoric Bones. In The Skeletal Biology of Past Peoples : Research Methods, edited by Saunders, S. R. and Katzenberg, M. A., pp. 105120. John Wiley and Sons, New York.Google Scholar
Katzenberg, M. A. 1992b Changing Diet and Health in Pre-and Protohistoric Canada. In Health and Lifestyle Change, edited by Huss-Ashmore, R., Shall, J., and Hediger, M., pp. 2332. MASCA Research Papers in Science and Archaeology 9. Museum Applied Science Center for Archaeology, Philadelphia.Google Scholar
Katzenberg, M. A., and Kelley, J. H. 1991 Stable Isotope Analysis of Prehistoric Bone from the Sierra Blanca Region of New Mexico. Mogollon V : Proceedings of the 1988 Mogollon Conference, pp. 207219. Las Cruces.Google Scholar
Katzenberg, M. A., and Schwarcz, H. P. 1986 Paleonutrition in Southern Ontario : Evidence from Strontium and Stable Isotopes. Canadian Journal of Anthropology 5(2) : 1522.Google Scholar
Katzenberg, M. A., Saunders, S. R., and Fitzgerald, W. R. 1993 Age Differences in Stable Carbon and Nitrogen Isotope Ratios in a Population of Prehistoric Maize Horticulturists. American Journal of Physical Anthropology 90 : 267281.CrossRefGoogle Scholar
Keegan, W. F. 1987 Emergent Horticultural Economies of the Eastern Woodlands. Occasional Paper No. 7. Center for Archaeological Investigations, Southern Illinois University, Carbondale.Google Scholar
Keegan, W. F. 1989 Stable Isotope Analysis of Prehistoric Diet. In Reconstruction of Life from the Skeleton, edited by-M. Y. Iscan and R., K. A. Kennedy, pp. 223236. Alan R. Liss, New York.Google Scholar
Kenyon, W. A. 1968 The Miller Site'. Art and Archaeology Occasional Paper 14. Royal Ontario Museum, Toronto.Google Scholar
Koch, P. L., Behrensmeyer, A. K., Tuross, N., and Fogel, M. L. 1990 Isotopic Fidelity during Bone Weathering and Burial. In Annual Report of the Director, pp. 105110. Geophysical Laboratory, Carnegie Institution, Washington, D. C. Google Scholar
Krueger, H. W., and Sullivan, C. H. 1984 Models for Carbon Isotope Fractionation between Diet and Bone. In Stable Isotopes in Nutrition, edited by Turnlund, J. E. and Johnson, P. E., pp. 205222. Symposium Series 258. American Chemical Society, Washington, D. C. Google Scholar
Larsen, C. S. 1987 Bioarchaeological Interpretations of Subsistence Economy and Behavior from Human Skeletal Remains. Advances in Archaeological Method and Theory 10 : 339445.Google Scholar
Larsen, C. S., Schoeninger, M. J., van der Merwe, N. J., Moore, K. M., and Lee-Thorp, J. A. 1992 Carbon and Nitrogen Stable Isotopic Signatures of Human Dietary Change in the Georgia Bight. American Journal of Physical Anthropology 89(2) : 197214.Google Scholar
Longin, R. 1971 New Method of Collagen Extraction for Radiocarbon Dating. Nature 230 : 241242.Google Scholar
Lovell, N. C, Nelson, D. E., and Schwarcz, H. P. 1986 Carbon Isotope Ratios in Palaeodiet : Lack of Age or Sex Effect. Archaeometry 28(1) : 5155. NelsonGoogle Scholar
Lynott, M. J., Boutton, T. W., Price, J. E., and E., D. 1986 Stable Carbon Isotopic Evidence for Maize Agriculture in Southeast Missouri and Northeast Arkansas. American Antiquity 51 : 5165.Google Scholar
Mac Donald, J. D. A. 1986 New Dates for Old Chronologies : Radiocarbon Dates from the Varden Site. Kewa 9 : 822. Newsletter of the London Chapter, Ontario Archaeological Society.Google Scholar
Marino, B. D., and McElroy, M. B. 1991 Isotopic Composition of Atmospheric C02 Inferred from Carbon in C4 Plant Cellulose. Nature 349 : 127131.Google Scholar
Masters, P. M. 1987 Preferential Preservation of Noncollagenous Protein during Bone Diagenesis : Implications for Chronometric and Stable Isotopic Measurements. Geochimica et Cosmochimica Acta 51 : 32093214.CrossRefGoogle Scholar
Matson, R. G., and Chisholm, B. 1991 Basketmaker II Subsistence : Carbon Isotopes and Other Dietary Indicators from Cedar Mesa, Utah. American Antiquity 56 : 444459.CrossRefGoogle Scholar
Nelson, B. K., DeNiro, M. J., Schoeninger, M. J., DePaolo, D. J., and Hare, P. E. 1986 Effects of Diagenesis on Strontium, Carbon, Nitrogen and Oxygen Concentration and Isotopic Composition of Bone. Geochimica et Cosmochimica Acta 50 : 19411949.Google Scholar
Ossenberg, N. S. 1969 Osteology of the Miller Site. Royal Ontario Museum, Art and Archaeology Occasional Paper 18, Toronto.Google Scholar
Schnitzer, M. 1976 The Chemistry of Humic Substances. In Environmental Biogeochemistry, vol. 1, edited by Nriagu, J. O., pp. 89106. Ann Arbor Science Publishers, Ann Arbor.Google Scholar
Schoeninger, M. J. 1989 Reconstructing Prehistoric Human Diet. In The Chemistry of Prehistoric Human Bone, edited by Price, D. T., pp. 3867. School of American Research Advanced Seminar Series. Cambridge University Press, Cambridge.Google Scholar
Schoeninger, M. J., and DeNiro, M. J. 1984 Nitrogen and Carbon Isotopic Composition of Bone Collagen from Marine and Terrestrial Animals. Geochimica et Cosmochimica Acta 48 : 625639.Google Scholar
Schoeninger, M. J., and Moore, K. 1992 Bone Stable Isotope Studies in Archaeology. V Journal of World Prehistory 6(2) : 247296.Google Scholar
Schoeninger, M. J., Moore, K. M., Murray, M. L., and Kingston, J. D. 1989 Detection of Bone Preservation in Archaeological and Fossil Samples. Applied Geochemistry 4 : 281292.Google Scholar
Schurr, M. R. 1992 Isotopic and Mortuary Variability in a Middle [/ Mississippian Population. American Antiquity 57 : 300320.Google Scholar
Schurr, M. R., and Redmond, B. G. 1991 Stable Isotope Analysis of Incipient Maize Horticulturists from the Gard Island 2 Site. Mid-continental Journal of Archaeology 16(1) : 6984.Google Scholar
Schwarcz, H. P., and Schoeninger, M. J. 1991 Stable Isotope Analyses in Human Nutritional Ecology. Yearbook of Physical Anthropology 34 : 283322.CrossRefGoogle Scholar
Schwarcz, H. P., Melbye, F. J., Katzenberg, M. A., and Knyf, M. 1985 Stable Isotopes in Human Skeletons of Southern Ontario : Reconstructing Paleodiet. Journal of Achaeological Science 12 : 187206.Google Scholar
Shearer, G., Kohl, D. H., Virginia, R. A., Bryan, B. A., Skeeters, J. L., Nilsen, E. T., Sharifi, M. R., and Rundel, P. W. 1983 Estimates of N2-Fixation from Variation in the Natural Abundance of L5N Sonoran Desert Ecosystems. Oecologia 56 : 365373.CrossRefGoogle Scholar
Si Uen, A., Sealy, J. C., and Merwe, N. J. van der 1989 Chemistry and Paleodietary Research : No More Easy Answers. American Antiquity 54 : 504512.Google Scholar
Smith, B. D. 1989 Origins of Agriculture in Eastern North America. Science 246 : 13661371.Google Scholar
Smith, B. D. 1992 Prehistoric Plant Husbandry in Eastern North \y America. In The Origins of Agriculture : An International Perspective, edited by Cowan, C. W. and Watson, P. J., pp. 101119. Smithsonian Institution Press, Washington, D. C. Google Scholar
Spielmann, K. A., Schoeninger, M. J., and Moore, K. 1990 Plains-Pueblo Interdependence and Human Diet at Pecos Pueblo, New Mexico. American Antiquity 55 : 745765.Google Scholar
Stothers, D. M. 1977 The Princess Point Complex. Mercury Series Paper No. 58, Archaeological Survey of Canada. National Museum of Man, National Museums of Canada, Ottawa.Google Scholar
Stothers, D. M., and Bechtel, S. K. 1987 Stable Carbon Isotope Analysis : An Inter-regional Perspective. The Archaeology of Eastern North America 15 : 137154.Google Scholar
Stuiver, M., and Pearson, G. W. 1986 High Precision Decadal Calibration of the Radiocarbon Time Scale, 500-2500 B. C. Radiocarbon 28 : 839862.Google Scholar
Tieszen, L. L., Boutton, T. W., Tesdahl, K. G., and Slade, N. A. 1983 Fractionation and Turnover of Stable Carbon Isotopes in Animal Tissues : Implications for 813C Analysis of Diet. Oecologia 57 : 3237.CrossRefGoogle Scholar
Tieszen, L. L. 1991 Natural Variations in the Carbon Isotope Values of Plants : Implications for Archaeology, Ecology and Paleoecology. Journal of Archaeological Science 18 : 227248.Google Scholar
Tieszen, L. L., and Fagre, T. 1993a Carbon Isotopic Variability in Modern and Archaeological Maize. Journal of Archaeological Science 20 : 2540.Google Scholar
Tieszen, L. L., and Fagre, T. 1993b Effect of Diet Quality and Composition on the Isotopic Composition of Respiratory C02, Bone Collagen, Bioapatite and Soft Tissues. In Prehistoric Human Bone : Archaeology at the Molecular Level, edited by Lambert, J. B. and Grupe, G., pp. 121155. Springer-Verlag, Berlin.Google Scholar
Tooker, E. 1964 Ethnography of the Huron Indians, 1615-1649. Bureau of American Ethnology Bulletin 190, Smithsonian Institution, Washington, D. C. Google Scholar
Trigger, B. G. 1969 The Huron : Farmers of the North. Holt, Rinehart and Winston, New York Google Scholar
van der Merwe, N. J. 1982 Carbon Isotopes, Photosynthesis, and Archaeology. American Scientist 70 : 596606.Google Scholar
van der Merwe, N. J., and Medina, E. 1991 The Canopy Effect, Carbon Isotope Ratios and Foodwebs in Amazonia. Journal of Archaeological Science 18 : 249259.Google Scholar
van der Merwe, N. J., and Vogel, J. C. 1978 13C Content of Human Collagen as a Measure I v of Prehistoric Diet in Woodland North America. Nature 276 : 815816.Google Scholar
Virginia, R. A., and Delwiche, C. C. 1982 Natural “N Abundance of Presumed N2-Fixing and Non-N2-Fixing Plants from Selected Ecosystems. Oecologia 54 : 317325.Google Scholar
Vogel, J. C. 1978 Isotopic Assessment of the Dietary Habits of Ungulates. South African Journal of Science 74 : 298301.Google Scholar
Vogel, J. C. 1977 Isotopic Evidence for Early Maize Cultivation in New York State. American Antiquity 42 : 232-242.Google Scholar
Watson, P. J. 1985 The Impact of Early Horticulture in the Upland Drainages of the Midwest and Midsouth. In Prehistoric Food Production in North America, edited by Ford, R. I., pp. 99148. Anthropological Papers No. 75. Museum of Anthropology, University of Michigan, Ann Arbor.Google Scholar
Wright, J. V. 1966 The Ontario Iroquois Tradition. Bulletin 210, National Museums of Canada, Ottawa.Google Scholar
Yarnell, R. A. 1984 The Mclntyre Site : Late Archaic Plant Remains from Southern Ontario. In The Mclntyre Site : Archaeology, Subsistence and Environment. Mercury Series Paper No. 126, Archaeological Survey of Canada. National Museums of Canada, Ottawa.Google Scholar