Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T18:21:02.368Z Has data issue: false hasContentIssue false

Sources of Archaeological Obsidian in the Greater American Southwest: An Update and Quantitative Analysis

Published online by Cambridge University Press:  20 January 2017

M. Steven Shackley*
Affiliation:
Phoebe Hearst Museum of Anthropology, 103 Kroeber Hall, University of California, Berkeley, CA 94720-3712

Abstract

Obsidian studies in the greater American Southwest have come of age. No longer does the region lag behind other adjoining regions both in the understanding of source provenance and the integración of obsidian source studies into regional designs. Most of the archaeological obsidian sources discussed here were originally presented in semi-quantitative form in this journal in 1988 (Shackley 1988a). The purpose here is to present that same data in broadly useable quantitative form calibrated to international standards, update the source descriptions when appropriate, and, finally, present data on a few new sources recently located. This is a necessary step to continue the momentum of obsidian studies in the region and make the information available to all. Finally, some discussion is directed toward the archaeological utility of obsidian studies in the region.

Resumen

Resumen

Los estudios sobre obsidiana en el gran Suroeste Americano han madurado. La región ya no se encuentra detrás de adyacentes tanto en la comprensión de fuentes de proveniencia, como en la integración de los estudios de fuentes de obsidiana detron de un diseño regional. La mayoría de los yacimientos arqueológicos de obsidiana discutiós aquí fueron originalmente presentados de forma semicuantitativa para esta publicación en 1988 (Shackley 1988a). El propósito aquí es, presentar estos mismos datos de una forma cuantitativa ampliamente utilizada en los estándars internacionales de calibración, actualizar la descripción del yacimiento cuando sea apropriado, y finalmente, presentar datos actualizados de algunos yacimientos neuvos recientemente localizados. Este es un paso necesario para continuar la momento de los estudios obsidiana en la región y hacer la informatión disponible a todos. Finalmente, alguna discusión se dirige hacia la utilidad arqueológica de el estudios de obsidiana en la región.

Type
Reports
Copyright
Copyright © The Society for American Archaeology 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Alper, A. M. 1961 Geology of Walnut Wells Quadrangle, Hidalgo County, New Mexico. Unpublished Ph. D. dissertation, Columbia University, New York City.Google Scholar
Baugh, T. G., and Nelson, F. W. 1987 New Mexico Obsidian Sources and Exchange on the Southern Plains. Journal of Field Archaeology 14 : 313329.Google Scholar
Baxter, M. J. 1994a Stepwise Discriminant Analysis in Archaeometry : A Critique. Journal of Archaeological Science 21 : 659666.Google Scholar
Baxter, M. J. 1994b Exploratory Multivariate Analysis in Archaeology. Edinburgh University Press, Edinburgh.Google Scholar
Bishop, R. L., and Neff, H. 1989 Compositional Data Analysis in Archaeology. In Archaeological Chemistry IV, edited by Allen, R. O., pp. 5786. Advances in Chemistry Series 220. American Chemical Society, Washington, D. C. Google Scholar
Bishop, R. L., Canouts, B., Crown, P. L., and DeAtley, S. P. 1990 Sensitivity, Precision, and Accuracy : Their Roles in Ceramic Compositional Data Bases. American Antiquity 55 : 537546.Google Scholar
Bouska, V 1993 Natural Glasses. Ellis Horwood, New York City.Google Scholar
Boyer, W. W., and Robinson, P. 1956 Obsidian Artifacts of Northwestern New Mexico and Their Correlation with Source Material. El Palacio 63(11-12) : 333345.Google Scholar
Brooks, W. E., and Ratte, J. C. 1985 Geologic Map of Bear Mountain Quadrangle, Grant County, New Mexico. Miscellaneous Field Studies Map MF-1782. U. S. Geological Survey, Washington, D. C. Google Scholar
Burton, J. H., and Simon, A. W. 1993 Acid Extraction as a Simple and Inexpensive Method for Compositional Characterization of Archaeological Ceramics. American Antiquity 58 : 4559.Google Scholar
Dibblee T., W Jr., 1966 Geologic Map of the Broadwell Lake Quadrangle, San Bernardino County, California, Miscellaneous Geologic Investigations. Map 1-478. U. S. Geological Survey and California Division of Mines and Geology, Washington, D. C. Google Scholar
Doyel, D. E. 1994 Production and Exchange of Obsidian Artifacts at the Gatlin Site, Southwestern Arizona. Paper presented at the 59th Annual Meeting of the Society for American Archaeology, Anaheim, California.Google Scholar
Erb, E. E. Jr., 1979 Petrologic and Structural Evolution of Ash-Flow Tuff Cauldrons and Noncauldron-Related Volcanic Rocks in the Animas and Southern Peloncillo Mountains, Hidalgo County, New Mexico. Unpublished Ph. D. dissertation, Department of Geology, University of New Mexico, Albuquerque.Google Scholar
Ericson, J. E. 1977 Prehistoric Exchange Systems in California : The Results of Obsidian Dating and Tracing. Unpublished Ph. D. dissertation, Department of Anthropology, University of California, Los Angeles.Google Scholar
Findlow, F. J., and Bolognese, M. 1982 Regional Modeling of Obsidian Procurement in the American Southwest. In Contexts for Prehistoric Exchange, edited by Ericson, J. E. and Earle, T. K., pp. 5381. Academic Press, New York City.Google Scholar
Glascock, M. D. 1991 Tables for Neutron Activation Analysis. 3rd ed. Research Reactor Facility, University of Missouri, Columbia.Google Scholar
Glascock, M. D. 1992 Characterization of Archaeological Ceramics at MURR by Neutron Activation Analysis and Multivariate Statistics. In Chemical Characterization of Ceramic Pastes in Archaeology, edited by Neff, H., pp. 1126. Prehistory Press, Madison, Wisconsin.Google Scholar
Glascock, M. D. 1994 New World Obsidian : Recent Investigations. In Archaeometry of Pre-Columbian Sites and Artifacts, Proceedings of the 28th International Symposium on Archaeometry, edited by Scott, D. A., and Myers, P, pp. 113134. Getty Conservation Institute, Los Angeles.Google Scholar
Glascock, M. D., and Anderson, M. P. 1993 Geological Reference Materials for Standardization and Quality Assurance of Instrumental Neutron Activation Analysis. Journal of Radioanalytical and Nuclear Chemistry 174(2) : 229242.Google Scholar
Govindaraju, K. 1989 1989 Compilation of Working Values and Sample Description for 272 Geostandards. Geostandards Newsletter 13. Special issue.Google Scholar
Hampel, J. H. 1984 Technical Considerations in X-ray Fluorescence Analysis of Obsidian. In Obsidian Studies in the Great Basin, edited by Hughes, R. E., pp. 2125. Contributions of the University of California Archaeological Research Facility 45, Berkeley.Google Scholar
Harbottle, G. 1976 Activation Analysis in Archaeology. In Radiochemistry 3, edited by Newton, G. W A., pp. 3372. The Chemical Society, London.Google Scholar
Harbottle, G. 1982 Chemical Characterization in Archaeology. In Context for Prehistoric Exchange, edited by Ericson, J. E. and Earle, T. K., pp. 1351. Academic Press, New York City.Google Scholar
Hughes, R. E. 1986 Trace Element Composition of Obsidian Butte, Imperial County, California. Southern California Academy of Science Bulletin 85(1) : 3545.Google Scholar
Hughes, R. E. 1988a Archaeological Significance of Geochemical Contrasts Among Southwestern New Mexico Obsidians. The Texas Journal of Science 40(3) : 297307.Google Scholar
Hughes, R. E. 1988b The Coso Volcanic Field Reexamined : Implications for Obsidian Sourcing and Hydration Dating Research. Geoarchaeology 3(4) : 253265.CrossRefGoogle Scholar
Hughes, R. E. 1994 Intrasource Chemical Variability of Artefact-Quality Obsidians from the Casa Diablo Area, California. Journal of Archaeological Science 21 : 263271.CrossRefGoogle Scholar
Hughes, R. E., and Smith, R. L. 1993 Archaeology, Geology, and Geochemistry in Obsidian Provenance Studies. In Scale on Archaeological and Geoscientific Perspectives, edited by Stein, J. K. and Linse, A. R., pp. 7991. Geological Society of America Special Paper 283. International Association for Obsidian Studies (IAOS) Google Scholar
Hughes, R. E., and Smith, R. L. 1994 Field and Laboratory Standards in Obsidian Geochemistry : SAA Workshop Sponsored by IAOS. International Association for Obsidian Studies Bulletin 11 : 1Google Scholar
Jack, R. N. 1971 The Source of Obsidian Artifacts in Northern Arizona. Plateau 43(1) : 103114.Google Scholar
Johnson, R. A., and Wichern, D. W 1982 Applied Multivariate Statistical Analysis. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
Lesko, L. M. 1989 A Reexamination of Northern Arizona Obsidians. The Kiva 54 : 385399.Google Scholar
LeTourneau, P. D. 1994 Geologic Investigations of the Antelope Wells Obsidian Source, Southern Animas Mountains, New Mexico. Paper presented at the 59th Annual Meeting of the Society for American Archaeology, Anaheim, California.Google Scholar
Longwell, C. R., Pampeyan, E. H., Bowyer, B., and Roberts, R. G. 1965 Geology and Mineral Deposits of Clark County, Nevada. Nevada Bureau of Mines and Geology Bulletin 62. Mackay School of Mines, University of Nevada, Reno.Google Scholar
McCarthy, J. J., and Schamber, F. H. 1981 Least-Squares Fit with Digital Filter : A Status Report. In Energy Dispersive X-ray Spectrometry, edited by Heinrich, K. F. J.. Newbury, D. E., R. L. Publication 604, National Bureau of Standards, Washington, D. C. Google Scholar
Macdonald, R., Smith, R. L., and Thomas, J. 1992 Chemistry of Subalkalic Silicic Obsidians. Professional Paper 1523. U. S. Geological Survey, Washington, D. C. Google Scholar
Mahood, G. A., and Hildreth, W 1983 Large Partition Coefficients for Trace Elements in High-Silica Rhyolites. Geochimica et Cosmochimica Acta 47 : 1130.Google Scholar
Mahood, G. A., and Stimac, J. A. 1990 Trace-Element Partitioning in Pantellerites and Trachytes. Geochimica et Cosmochimica Acta 54 : 22572276.Google Scholar
Mitchell, D. R. 1992 Burials, Households, and Paleodemography at Pueblo Grande. The Kiva 58 : 89106.CrossRefGoogle Scholar
Mitchell, D. R., and Shackley, M. S. 1995 Classic Period Hohokam Obsidian Studies in Southern Arizona. Journal of Field Archaeology 22(3), in press.Google Scholar
Neff, H. (editor) 1992 Chemical Characterization of Ceramic Pastes in Archaeology. Prehistory Press, Madison, Wisconsin.Google Scholar
Newman, J. R., and Nielsen, R. L. 1985 Initial Notes on the X-ray Fluorescence Sourcing of Northern New Mexico Obsidians. Journal of Field Archaeology 12 : 377383.Google Scholar
Peterson, J. E., Mitchell, D. R., and Shackley, M. S. 1994 Obsidian from Pueblo Grande, Arizona : Modeling Social and Economic Patterns in Lithic Procurement. In Archaeometry of Pre-Columbian Sites and Artifacts, Proceedings of the 28th International Symposium on Archaeometry, edited by Scott, D. A. and Myers, P., pp. 161174. Getty Conservation Institute, Los Angeles.Google Scholar
Ratte, J. C. 1982 Geologic Map of the Lower San Francisco Wilderness Study Area and Contiguous Roadless Area, Greenlee County, Arizona, and Catron and Grant Counties, New Mexico. Miscellaneous Field Studies Map MF-1463-B. U. S. Geological Survey, Washington, D. C. Google Scholar
Ratte, J. C, and Brooks, W. E. 1983 Geologic Map of the Mule Creek Quadrangle, Grant County, New Mexico. Miscellaneous Studies Map MF-1666. U. S. Geological Survey, Washington, D. C. Google Scholar
Ratte, J. C, and Brooks, W. E. 1989 Geologic Map of the Wilson Mountain Quadrangle, Catron and Grant Counties, New Mexico. Geologic Quadrangle Map GQ-1611. U. S. Geological Survey, Washington, D. C. Google Scholar
Ratte, J. C, and Hedlund, D. C. 1981 Geologic Map of the Hells Hole Further Planning Area (RARE II), Greenlee County, Arizona and Grant County, New Mexico. Miscellaneous Field Studies Map MF-1344-A. U. S. Geological Survey, Washington, D. C. Google Scholar
Ratte, J. C, Marvin, R. F., and Naeser, C. W. 1984 Calderas and Ash Flow Tuffs of the Mogollon Mountains, Southwestern New Mexico. Journal of Geophysical Research 89 : 87138732.CrossRefGoogle Scholar
Reynolds, S. J., Welty, J. W., and Spencer, J. E. 1986 Volcanic History of Arizona. Arizona Bureau of Geology and Mineral Technology Fieldnotes 16(2) : 15.Google Scholar
Rhodes, R., and Smith, E. 1972 Geology and Tectonic Setting of the Mule Creek Caldera, New Mexico, USA. Bulletin Volcanologie 36 : 401111.CrossRefGoogle Scholar
Sanders, S. C, Zahrt, J. D., and Bell, G. 1982 Trace and Minor Element Analysis of Obsidian from the San Francisco Volcanic Field Using X-Ray Fluorescence. Advances in X-Ray Analysis 25 : 121125.Google Scholar
Schamber, F. H. 1977 A Modification of the Linear Least-Squares Fitting Method Which Provides Continuum Suppression. In X-ray Fluorescence Analysis of Environmental Samples, edited by Dzubay, T. G., pp. 241257. Ann Arbor Science Publishers, Ann Arbor.Google Scholar
Schreiber, J. P., and Breed, W. J. 1971 Obsidian Localities in the San Francisco Volcanic Field, Arizona. Plateau 43(1) : 115119.Google Scholar
Shackley, M. S. 1988a Sources of Archaeological Obsidian in the Southwest : An Archaeological, Petrological, and Geochemical Study. American Antiquity 53 : 752772.Google Scholar
Shackley, M. S. 1988b Archaeology. In Cultural and Paleontological Resources Survey and Subsurface Evaluation, U. S. Sprint Fiber Optic Cable Project, Rialto, California, to Las Vegas, Nevada, edited by Woods, C. M., pp. 1143. Manuscript on file, Information Center, San Bernardino County Museum, San Bernardino, California.Google Scholar
Shackley, M. S. 1990 Early Hunter-Gatherer Procurement Ranges in the Southwest : Evidence from Obsidian Geochemistry and Lithic Technology. Ph. D. dissertation, Arizona State University. University Microfilms, Ann Arbor.Google Scholar
Shackley, M. S. 1991 Tank Mountains Obsidian : A Newly Discovered Archaeological Obsidian Source in East-Central Yuma County, Arizona. The Kiva 57 : 1725.Google Scholar
Shackley, M. S. 1992a The Upper Gila River Gravels as an Archaeological Obsidian Source Region : Implications for Models of Exchange and Interaction. Geoarchaeology 7(4) : 315326.Google Scholar
Shackley, M. S. 1992b An Energy Dispersive X-ray Fluorescence (EDXRF) Analysis of 71 Obsidian Artifacts from Organ Pipe Cactus National Monument, Southern Arizona. Manuscript on file with the National Park Service, Western Archaeological and Conservation Center, Tucson, Arizona.Google Scholar
Shackley, M. S. 1993a Gamma Rays, X-Rays, Stone Tools and the “Sourcing” Myth : Are We Missing the Point? Paper presented at the 58th Annual Meeting of the Society for American Archaeology, St. Louis, Missouri.Google Scholar
Shackley, M. S. 1993b Obsidian Procurement and Distribution in Prehistoric Sites in the Proyecto Arte Rupestre de Baja California Sur, Central Baja California : An Energy Dispersive X-ray Fluorescence (EDXRF) Study. Prepared for Institute Nacional de Antropologia e Historia (INAH). Copies available at INAH, La Paz, Baja California Sur, Mexico.Google Scholar
Shackley, M. S. 1993c An Energy Dispersive X-Ray Fluorescence Analysis (EDXRF) of Obsidian Artifacts from CASDi-186, CA-SDi-4757, CA-SDi-4765, and CA-SDi- 4759. In Multi-Component Archaic and Late Prehistoric Residential Camps Along the Sweetwater River, Rancho San Diego, California, edited by Byrd, B. F., Serr, and C., pp. 417424. Brian Mooney Associates Anthropological Technical Series 1. Copies available from Brian Mooney Associates, 9903 Businesspark Avenue, San Diego, CA 92131.Google Scholar
Shackley, M. S. 1994a Analisis de energia dispersiva en fluorescencia de rayos x (EDXRF) de artefactos de obsidiana, de sitios arquelogicos en Bahia de Los Angeles y materials de una fuente de obsdiana en Isla Angel de la Guarda, Baja California. In Invesigaciones de ecologia social y cambios entre culturasprehistoricas en la region de Bahia de Los Angeles, Baja California, edited by Ritter, E., pp. 172184. Prepared for the Institute Nacional de Antropologia e Historia (INAH), Mexicali, Baja California. Manuscript in possession of the author.Google Scholar
Shackley, M. S. 1994b Intersource and Intrasource Geochemical Variability in Two Newly Discovered Archaeological Obsidian Sources in the Southern Great Basin : Bristol Mountains, California and Devil Peak, Nevada. Journal of California and Great Basin Anthropology 16(1) : 118129.Google Scholar
Shackley, M. S. 1995a Range and Mobility in the Early Hunter-Gatherer Southwest. In Early Formative Adaptations in the Southern Southwest, edited by Roth, B.. Prehistory Press, Madison, Wisconsin, in press.Google Scholar
Shackley, M. S. 1995b Gamma Rays, X-Rays, and Stone Tools : Advances in Archaeological Geochemistry. Unpublished manuscript submitted to the Journal of Archaeological Research.Google Scholar
Stevenson, C. M, and Klimkiewicz, M. 1990 X-Ray Fluorescence Analysis of Obsidian Sources in Arizona and New Mexico. The Kiva 55 : 235243.CrossRefGoogle Scholar
Weber, R. H., and Willard, M. E. 1959 Reconnaissance Geologic Map of Mogollon Thirty-Minute Quadrangle. New Mexico Institute of Mining and Technology, Albuquerque.Google Scholar
Zeller, R. A. 1962 Reconnaissance Geologic Map of the Southern Animas Mountains. New Mexico Institute of Mining and Technology, Albuquerque.Google Scholar