Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-20T18:06:02.471Z Has data issue: false hasContentIssue false

Radiocarbon Dating the Human Occupation at Sandia Cave, New Mexico

Published online by Cambridge University Press:  20 January 2017

Jessica C. Thompson
Affiliation:
School of Social Science, University of Queensland, Brisbane, QLD 4072, Australia ([email protected])
C. Vance Haynes Jr.
Affiliation:
School of Anthropology, University of Arizona, Tucson, Arizona 85721, USA

Abstract

Sandia Cave generated much interest when in the 1940s extinct Pleistocene megafauna were reported in association with what appeared to be a pre-Folsom Paleoindian component. By the 1950s a series of controversies regarding the stratigraphy and dating began to push the site into obscurity. The human occupation at the site has never been directly dated beyond 2250 ± 50 BP, and nonartifactual associated bone will not provide reliable age estimates because of extensive bioturbation, poor provenience, and the fact that the majority of fossils were accumulated by carnivores and rodents, rather than humans. However, a small number of mineralized fragments display human modification, suggesting occasional human activity of some antiquity at the site. One bone tool, one burned bone, and four bones bearing butchery marks were subjected to direct Accelerator Mass Spectrometry (AMS) 14C dating. Unfortunately, mineralized bones did not preserve sufficient collagen to be dated. Two unmineralized specimens (the burned bone and the bone tool) push the direct Chronometric ages for the human occupation at Sandia Cave back to 3447 ± 96 BP. An older Folsom occupation is suggested by associated dates on breccia, but all lines of evidence taken together provide no support for a pre-Folsom human occupation.

Resumen

Resumen

La Cueva Sandia generó mucho interés cuando en los años 40’s se reportaron restos de megafauna extinta del Pleistoceno asociados con lo que parecía ser un componente Paleoindio pre-Folsom. Para los años 50’s una serie de controversias sobre la estratigrafía y datación empezaron allevar al sitio al olvido. La ocupación humana en este sitio nunca ha sido directamente datada más allá de 2250 ± 50 AP, y el hueso asociado no-artefactual no proporcionará estimaciones de edad confiables por la gran cantidad de bioturbación, proveniencia inconclusa, y el hecho que la mayoría de los fósiles fueron acumulados por carnívoros y roedores en vez de humanos. Sin embargo, un número menor de fragmentos mineralizados muestran alteración humana, lo cual sugiere actividad humana ocasional de cierta antigüedad enei sitio arqueológico. Una herramienta de hueso, un hueso quemado, y cuatro huesos que tienen marcas de destazamiento fueron sujetos directamente al método de datación de Espectrometría de Masas con Aceleradores (AMS) 14C. Desafortunadamente, los huesos mineralizados no preservaron suficiente colágeno para ser datados. Dos ejemplares desmineralizados (el hueso quemado y la herramienta de hueso) retrasan la edad cronométrica directa de la ocupación humana en la Cueva Sandia a 3447 ± 96 AP. Una ocupación Folsom más antigua se sugiere por la datación de brecha asociada, pero toda la evidencia acumulada no provee un respaldo para una ocupación humana pre-Folsom.

Type
Reports
Copyright
Copyright © The Society for American Archaeology 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Behrensmeyer, Anna K., Gordon, Kathleen D., and Yanagi, Glenn T. 1986 Trampling as a Cause of Bone Surface Damage and Pseudo-Cutmarks. Nature 319:768771.CrossRefGoogle Scholar
Bliss, Wesley L. 1940a A Chronological Problem Presented by Sandia Cave, New Mexico. American Antiquity 5:200201.Google Scholar
Bliss, Wesley L. 1940b Correspondence: Sandia Cave. American Antiquity 6:7778.Google Scholar
Blumenschine, Robert J., Marean, Curtis W., and Capaldo, Salvador D. 1996 Blind Tests on Inter-Analyst Correspondence and Accuracy in the Identification of Cut Marks, Percussion Marks, and Carnivore Tooth Marks on Bone Surfaces. Journal of Archaeological Science 23:493507.CrossRefGoogle Scholar
Blumenschine, Robert J., and Selvaggio, Marie M. 1988 Percussion Marks on Bone Surfaces as a New Diagnostic of Hominid Behavior. Nature 333:763765.CrossRefGoogle Scholar
Bradley, Bruce, and Stanford, Dennis 2004 The North Atlantic Ice-Edge Corridor: A Possible Palaeolithic Route to the New World. World Archaeology 36:459478.CrossRefGoogle Scholar
Brand, Donald D. 1940 Correspondence: Regarding Sandia Cave. American Antiquity 5:339339.Google Scholar
Bryan, Kirk 1941 Correlation of the Deposits of Sandia Cave, New Mexico, with the Glacial Chronology. In Evidences of Early Occupation in Sandia Cave, New Mexico, and other Sites in the Sandia-Manzano Region, pp. 4564. Smithsonian Miscel laneous Collections. Smithsonian Institution, Washington, D.C. Google Scholar
Crane, Horace R. 1955 Antiquity of the Sandia Culture: Carbon-14 Measurements. Science 122:689690.CrossRefGoogle ScholarPubMed
Crane, Horace R. 1956 University of Michigan Radiocarbon Dates I. Science 124:664672.Google Scholar
Dominguez-Rodrigo, Manuel 2009 A New Protocol to Differentiate Trampling Marks from Butchery Cut Marks. Journal of Archaeological Science 36:26432654.Google Scholar
Domínguez-Rodrigo, Manuel, and Yravedra, J. 2009 Why Are Cut Mark Frequencies in Archaeofaunal Assemblages So Variable? A Multivariate Analysis. Journal of Archaeological Science 36:884894.Google Scholar
Greenman, Emerson F. 1963 The Upper Palaeolithic and the New World. Current Anthropology 4:4191.Google Scholar
Gross, Hugo 1951 Mastodons, Mammoths, and Man in North America. Bulletin of the Texas Archaeological and Paleontological Society 22:114.Google Scholar
Gross, Hugo 1957 Age of the Sandia culture. Science 126:305306.CrossRefGoogle ScholarPubMed
Haynes, C. Vance Jr. 1967 Bone Organic Matter and Radiocarbon Dating. In Radioactive Dating and Methods of Low Level Counting, pp. 163168. vol. 163–168. International Atomic Energy Agency, Vienna.Google Scholar
Haynes, C. Vance Jr. 1968 Radiocarbon Analysis of Inorganic Carbon of Fossil Bone and Enamel. Science 161:687688.Google Scholar
Haynes, C. Vance Jr., and Agogino, G. A. 1986 Geochronology of Sandia Cave, pp. i32. Smithsonian Contributions to Anthropology. Smithsonian Institution Press, Washington.Google Scholar
Hibben, Frank C. 1937 Association of Man with Pleistocene Mammals in the Sandia Mountains, New Mexico. American Antiquity 2:260263.CrossRefGoogle Scholar
Hibben, Frank C. 1940a Excavation of the Sandia Cave, New Mexico. In Yearbook of the American Philosophical Society, Philadelphia, pp. 190191, Philadelphia.Google Scholar
Hibben, Frank C. 1940b Sandia Man. Scientific American 163:1415.Google Scholar
Hibben, Frank C. 1941a Correspondence: Sandia Cave. American Antiquity 6:266266.Google Scholar
Hibben, Frank C. 1941b Evidences of Early Occupation in Sandia Cave, New Mexico, and other Sites in the Sandia-Manzano Region, pp. 144. Smithsonian Miscellaneous Collections. Smithsonian Institution, Washington, D.C. Google Scholar
Hibben, Frank C. 1946 The First Thirty-Eight Sandia Points. American Antiquity 11:257258.Google Scholar
Hibben, Frank C. 1955 Specimens from Sandia Cave and their possible significance. Science 122:688689.Google Scholar
Hibben, Frank C. 1957 Comments following the Johnson 1957 article. Science 125:235235.Google Scholar
Hibben, Frank C. Johnson, Frederick 1957 Radiocarbon Dates from Sandia Cave, Correction. Science 125:234235.Google Scholar
Kelley, Vincent C., and Northrop, Stuart A. 1975 Geology of the Sandia Mountains and Vicinity. Memoir. New Mexico Bureau of Mines and Mineral Resources, Socorro, New Mexico Google Scholar
Krieger, Alex D. 1957 Notes and News: New Mexico. American Antiquity 22:435436.Google Scholar
Longin, R. 1971 New Method of Collagen Extraction for Radiocarbon Dating. Nature 230:241242.Google Scholar
Marean, Curtis W., and Bertino, Leanne 1994 Intrasite Spatial Analysis of Bone: Subtracting the Effect of Secondary Carnivore Consumers. American Antiquity 59:748768.Google Scholar
Marean, Curtis W., Spencer, Lilian M., Blumenschine, Robert J., and Capaldo, Salvadore D. 1992 Captive Hyena Bone Choice and Destruction, the Schlepp Effect, and Olduvai Archaeofaunas. Journal of Archaeological Science 19:101121.Google Scholar
May, Irving 1955 Isolation of Organic Carbon from Bones for 14C dating. Science 121(X):508509.Google Scholar
Morlan, Richard E. 1984 Toward the Definition of Criteria for the Recognition of Artificial Bone Alterations. Quaternary Research 22(2):160171.Google Scholar
Pickering, Travis R., and Egeland, Charles P. 2006 Experimental Patterns of Hammerstone Percussion Damage on Bones: Implications for Inferences of Carcass Processing by Humans. Journal of Archaeological Science 33:459469.Google Scholar
Preston, Douglas 1995 The Mystery of Sandia Cave. New Yorker, June:66–83.Google Scholar
Sellet, Frédéric 1998 The French Connection: Investigating a Possible Clovis-Solutrean Link. Current Research in the Pleistocene 15:6768.Google Scholar
Stanford, Dennis, and Bradley, Bruce 2002 Ocean Trails and Prairie Paths? Thoughts about Clovis Origins. In The First Americans: The Pleistocene Colonization of the New World, edited by N. Jablonski, pp. 255271. vol. 27. Memoirs of the California Academy of Sciences, San Francisco, California.Google Scholar
Stevens, Dominique E., and Agogino, George A. 1975 Sandia Cave: A Study in Controversy, edited by C. Irwin-Williams, pp. 152. Contributions in Anthropology. Paleo-Indian Institute, Eastern New Mexico University, Portales, New Mexico.Google Scholar
Straus, Lawrence G. 2000 Solutrean Settlement of North America? A Review of Reality. American Antiquity 65:219226.Google Scholar
Straus, Lawrence G., Meltzer, David, and Goebel, Thomas 2005 Ice Age Atlantis? Exploring the Solutrean-Clovis “Connection.” World Archaeology 37:507532.Google Scholar
Thompson, Jessica C. 2005 The Impact of Post-Depositional Processes on Bone Surface Modification Frequencies: A Corrective Strategy and its Application to the Loiyangalani Site, Serengeti Plain, Tanzania. Journal of Taphonomy 3(2):5780.Google Scholar
Thompson, Jessica C. 2008 Zooarchaeological Tests for Modern Human Behavior at Blombos Cave and Pinnacle Point Cave 13B, Southwestern Cape, South Africa. Dissertation, School of Human Evolution and Social Change, Arizona State University, Tempe.Google Scholar
Thompson, Jessica C. 2010 Taphonomic Analysis of the Faunal Assemblage from Pinnacle Point Cave 13B, Western Cape, South Africa. Journal of Human Evolution 59:321329.Google Scholar
Thompson, Jessica, and Morgan, Gary S. 2001 Late-Pleistocene Mammalian Fauna and Environments of the Sandia Mountains, New Mexico. Current Research in the Pleistocene 18:113115.Google Scholar
Thompson, Jessica, Sugiyama, N., and Morgan, Gary S. 2008 Taphonomic Analysis of the Mammalian Fauna from Sandia Cave, New Mexico, and the “Sandia Man” Controversy. American Antiquity 73:337360.Google Scholar
Magazine, Time 1940 Sandia Man. Time Magazine 35:67.Google Scholar
Magazine, Time 1953 Early American. Time Magazine 62:XX.Google Scholar