Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T13:37:15.045Z Has data issue: false hasContentIssue false

A Quantitative Diagnosis of Notches Made by Hammerstone Percussion and Carnivore Gnawing on Bovid Long Bones

Published online by Cambridge University Press:  20 January 2017

Salvatore D. Capaldo
Affiliation:
Department of Anthropology, Rutgers University, Douglass Campus, P.O. Box 270, New Brunswick, NJ 08903
Robert J. Blumenschine
Affiliation:
Department of Anthropology, Rutgers University, Douglass Campus, P.O. Box 270, New Brunswick, NJ 08903

Abstract

The frequency and morphology of notches produced on bovid long bones by carnivore gnawing (tooth notches) and hammerstone-on-anvil breakage (percussion notches) are quantified. Notches are semicircular- to arcuate-shaped indentations on fracture edges with corresponding negative flake scars on medullary surfaces. We restrict our analysis to notches produced under controlled conditions by either carnivores or hammerstones when diaphyses are breached to extract marrow. Percussion notches are characteristically more frequent, and, in cortical view, broader and shallower than tooth notches. The flakes removed from percussion notches are typically broader, and have a more obtuse release angle, than those removed from tooth notches. These morphological differences are statistically significant for notches on Bovid Size 1 and 2 long bones but not on Bovid Size 3 long bones.

Notches should be more durable than marks produced by carcass consumers on bone surfaces because they penetrate the entire thickness of the bone. As a result, notches are not easily obscured by weathering, chemical corrosion, or adhering matrix. Given this durability, and the initial success we have had in distinguishing the actor responsible for notch production on modern bones, notches can be used, with some limitations, to identify bone consumers archaeologically.

Resumen

Resumen

La frecuencia y morfología de las muescas producidas por la roedura de carnívoros en huesos largos de bóvidos (muescas de dientes) y aquéllas producidas por la fractura de yunque-y-martillo (muescas de percusión) son cuantificadas. La forma de las muescas varía entre semicircular y arqueada en los bordes de la fractura con las correspondientes cicatrices negativas de lascas en las superficies medulares. Restringimos nuestro análisis a las muescas producidas, bajo condiciones controladas, cuando dientes o martillos abren la diáfisis para extraer la médula. Las muescas de percusión tienden a ser más frecuentes y, en piano cortical, éstas son más anchas y superficiales que las muescas de dientes.

Las lascas removidas por las muescas de percusión son tipicamente más anchas y tienen un ángulo de salida más obtuso que aquéllas removidas por las muescas de dientes. Estas diferencias morfológicas son estadisticamente significativas para muescas presentes en huesos largos de bóvidos de tamaño uno y dos pero no para las presentes en huesos largos de bóvidos de tamaño tres. Las muescas deben ser más durables que las marcas producidas por consumidores de carcasas en la superficie de los huesos porque ésas penetran todo el espesor del hueso. Como resultado, las muescas no desaparecen facilmente con la erosión, corrosión química, o matriz adherida. Dada esta durabilidad y el éxito inicial que hemos tenido en distinguir a los actores responsables de la producción de muescas en huesos modernos, podemos decir que las muescas pueden ser usadas, con algunas limitaciones, para identificar a los consumidores de huesos en el registro arqueológico.

Type
Reports
Copyright
Copyright © The Society for American Archaeology 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Ascher, R. 1961 Experimental Archeology. American Anthropologist 63 : 793816.CrossRefGoogle Scholar
Behrensmeyer, A. K. 1978 Taphonomic and Ecological Information from Bone Weathering. Paleobiology 4 : 150162.CrossRefGoogle Scholar
Behrensmeyer, A. K., Gordon, K. D., and Yanagi, G. T. 1986 Trampling as a Cause of Bone Surface Damage and Pseudo-cutmarks. Nature 319 : 768771.CrossRefGoogle Scholar
Binford, L. R. 1981 Bones, Ancient Men and Modern Myths. Academic Press, New York.Google Scholar
Blumenschine, R. J. 1986 Carcass Consumption Sequences and the Archaeological Distinction of Scavenging and Hunting. Journal of Human Evolution 15 : 639659.CrossRefGoogle Scholar
Blumenschine, R. J. 1988a An Experimental Model of the Timing of Hominid and Carnivore Influence on Archaeological Bone Assemblages. Journal of Archaeological Science 15 : 483502.CrossRefGoogle Scholar
Blumenschine, R. J. 1988b Reinstating an Early Hominid Scavenging Niche : A Reply to Potts. Current Anthropology 29 : 483486.CrossRefGoogle Scholar
Blumenschine, R. J. 1991 Prey Size and Age Models of Prehistoric Hominid Scavenging : Test Cases from the Serengeti. In Human Predators and Prey Mortality, edited by Stiner, M. C., pp. 121147. Westview Press, Boulder, Colorado.Google Scholar
Blumenschine, R. J. 1995 Percussion Marks, Tooth Marks, and Experimental Determinations of the Timing of Hominid and Carnivore Access to Long Bones at FLK Zinjanthropus, Olduvai Gorge, Tanzania. Journal of Human Evolution, in press.CrossRefGoogle Scholar
Blumenschine, R. J., and Marean, C. W. 1993 A Carnivore's View of Archaeological Bone Assemblages. In From Bones to Behavior, edited by Hudson, J., pp. 273300. Center for Archaeological Investigations, Southern Illinois University, Carbondale.Google Scholar
Blumenschine, R. J., and Selvaggio, M. M. 1988 Percussion Marks on Bone Surfaces as a New Diagnostic of Hominid Behaviour. Nature 333 : 763765.CrossRefGoogle Scholar
Blumenschine, R. J., and Selvaggio, M. M. 1991 On the Marks of Marrow Bone Processing by Hammerstones and Hyenas : Their Anatomical Patterning and Archaeological Implications. In Cultural Beginnings, edited by Clark, J. D., pp. 1732. Dr. R. Habelt GMBH, Bonn.Google Scholar
Bonnichsen, R. 1973 Some Operational Aspects of Human and Animal Bone Alteration. In Mammalian Osteo-Archaeology, edited by Gilbert, B. M., pp. 924. Missouri Archaeological Society, Columbia.Google Scholar
Bonnichsen, R. 1979 Pleistocene Bone Technology in the Beringian Refugium. Paper No. 89. Archaeological Survey of Canada, National Museums of Canada, Ottawa.Google Scholar
Bonnichsen, R., and Will, R. 1980 Cultural Modification of Bone : The Experimental Approach in Faunal Analysis. In Mammalian Osteology, edited by Gilbert, B. M., pp. 730. Missouri Archaeological Society, Columbia.Google Scholar
Brain, C. K. 1981 The Hunters or the Hunted? An Introduction to African Cave Taphonomy. University of Chicago Press, Chicago.Google Scholar
Breuil, H. 1938 The Use of Bone Implements in the Old Palaeolithic Period. Antiquity 12 : 5667.CrossRefGoogle Scholar
Buckland, W. 1978 [1823] Reliquiae Diluvianae. Arno Press, New York.Google Scholar
Bunn, H. T. 1981 Archaeological Evidence for Meat-eating by Plio-Pleistocene Hominids from Koobi Fora and Olduvai Gorge. Nature 291 : 574577.CrossRefGoogle Scholar
Bunn, H. T. 1982 Meat-eating and Human Evolution : Studies on the Diet and Subsistence Patterns of Plio-Pleistocene Hominids in East Africa. Unpublished Ph. D. dissertation, Department of Anthropology, University of California, Berkeley.Google Scholar
Bunn, H. T. 1983 Comparative Analysis of Modern Bone Assemblages from a San Hunter-gatherer Camp in the Kalahari Desert, Botswana, and from a Spotted Hyena Den near Nairobi, Kenya. In Animals and Archaeology, edited by Clutton-Brock, J. and Grigson, C., pp. 143148. Hunters and Their Prey, vol. 1. BAR International Series 163. British Archaeological Reports, Oxford.Google Scholar
Bunn, H. T. 1989 Diagnosing Plio-Pleistocene Hominid Activity with Bone Fracture Evidence. In Bone Modification, edited by Bonnichsen, R. and Sorg, M., pp. 299315. Center for the Study of the First Americans, Orono, Maine.Google Scholar
Bunn, H. T., Kroll, E. M., and Bartram, L. E. 1991 Bone Distribution on a Modern East African Landscape and its Archaeological Implications. In Cultural Beginnings, edited by Clark, J. D., pp. 3354. Dr. R. Habelt GMBH, Bonn.Google Scholar
Bunn, H. T., Harris, J. W. K., Isaac, G. LI., Kaufulu, A., Kroll, E. M., Schick, K., Toth, N., and Behrensmeyer, A. K. 1980 Fxjj50 : An Early Pleistocene Site in Northern Keyna. World Archaeology 12 : 109144.CrossRefGoogle Scholar
Callahan, E. 1984 I Hate to Bicker, But… : A Study of Microblade Cores With Obtuse Platform Angles. Lithic Technology 13 : 8497.Google Scholar
Capaldo, S. D. 1990 Differential Treatment of Axial and Appendicular Elements by Scavenging Carnivores at Simulated Archaeological Sites. Paper presented at the Biennial Conference of the Society of Africanist Archaeologists, Gainesville, Florida.Google Scholar
Capaldo, S. D. 1995 Inferring Hominid and Carnivore Behavior from Dual-Patterned Archaeofaunal Assemblages. Unpublished Ph. D. dissertation, Department of Anthropology, Rutgers University, New Brunswick, New Jersey.Google Scholar
Cotterell, B., and Kamminga, J. 1975 The Mechanics of Flaking. In Lithic Use-Wear Analysis, edited by Hayden, B., pp. 97112. Academic Press, New York.Google Scholar
Cruz-Uribe, K. 1988 The Use and Meaning of Species Diversity and Richness in Archaeological Faunal Analysis. Journal of Archaeological Science 15 : 179196.CrossRefGoogle Scholar
Cruz-Uribe, K. 1991 Distinguishing Hyena from Hominid Bone Accumulations. Journal of Field Archaeology 18 : 467486.Google Scholar
Dart, R. 1957 The Osteodontokeratic Culture of Australopithecus prometheus. Memoir No. 10. Transvaal Museum, Pretoria.Google Scholar
Fiorillo, A. 1989 An Experimental Study of Trampling : Implications for the Fossil Record. In Bone Modification, edited by Bonnichsen, R. and Sorg, H., pp. 6171. Center for the Study of the First Americans, Orono, Maine.Google Scholar
Gifford, D. 1981 Taphonomy and Paleoecology : A Critical Review of Archaeology's Sister Disciplines. In Advances in Archaeological Method and Theory, vol. 4, edited by Schif Fer, M. B., pp. 365438. Academic Press, New York.CrossRefGoogle Scholar
Gifford-Gonzalez, D. 1991 Bones Are Not Enough : Analogues, Knowledge, and Interpretive Strategies in Zooarchaeology. Journal of Anthropological Archaeology 10 : 215254.CrossRefGoogle Scholar
Guthrie, R. D. 1984 The Evidence for Middle-Wisconsin Peopling of Beringia : An Evaluation. Quaternary Research 22 : 231241.CrossRefGoogle Scholar
Haynes, G. 1982 Utilization and Skeletal Disturbances of North American Prey Carcasses. Arctic 35 : 266281.CrossRefGoogle Scholar
Haynes, G., and Stanford, D. 1984 On the Possible Utilization of Camelops by Early Man in North America. Quaternary Research 22 : 216230.Google Scholar
Isaac, G. LI. 1984 The Archaeology of Human Origins : Studies of the Lower Pleistocene in East Africa. Advances in World Archaeology 3 : 187.Google Scholar
Johnson, E. 1983 A Framework for Interpretation in Bone Technology. In A Question of Bone Technology, edited by LeMoine, G. M. and Mac Eachern, A. S., pp. 5593. The Archaeological Association of the University of Calgary, Calgary.Google Scholar
Johnson, E. 1985 Current Developments in Bone Technology. Advances in Archaeological Methods and Theory , vol. 8, edited by Schiffer, M. B., pp. 157235. Academic Press, New York.Google Scholar
Klein, R. 1975 Paleoanthropological Implication's of the Nonarchaeological Bone Assemblage from Swartklip I, Southwestern Cape Province, South Africa. Quaternary Research 5 : 275288.CrossRefGoogle Scholar
Klein, R. 1976 The Mammalian Fauna of the Klasies River Mouth Sites, Southern Cape Province, South Africa. South African Archaeological Bulletin 31 : 7598.CrossRefGoogle Scholar
Klein, R. 1989 Why does Skeletal Part Representation Differ Between Smaller and Larger Bovids at Klasies River Mouth and Other Archaeological Sites? Journal of Archaeological Science 6 : 363381.Google Scholar
Kobayashi, H. 1975 The Experimental Study of Bipolar Flakes. In Lithic Technology : Making and Using Stone Tools, edited by Swanson, E., pp. 115127. Mouton, The Hague.Google Scholar
Lam, Y. M. 1992 Variability in the Behaviour of Spotted Hyaenas as Taphonomic Agents. Journal of Archaeological Science 19 : 389406.Google Scholar
Lyman, R. L. 1985 Bone Frequencies : Differential Transport, In Situ Destruction, and the MGUI. Journal of Archaeological Science 12 : 221236.Google Scholar
Lyman, R. L. 1987 Archaeofaunas and Butchery Studies : A Taphonomic Perspective. Advances in Archaeological Methods and Theory , vol. 10, edited by Schiffer, M. B., pp. 249337. Academic Press, New York.Google Scholar
Maguire, J. M., Pemberton, D., and Collett, M. H. 1980 The Makapansgat Limeworks Grey Breccia : Hominids, Hyaenas, Hystricids or Hillwash? Paleontologica Africana 23 : 7598.Google Scholar
Marean, C. W., Spencer, L. M., Blumenschine, R. J., and Capaldo, S. D. 1992 Captive Hyaena Bone Choice and Destruction, the Schlepp Effect, and Olduvai Archaeofaunas. Journal of Archaeological Science 19 : 101121.Google Scholar
Morlan, R. E. 1980 Toward the Definition of Criteria for the Recognition of Artificial Bone Alterations. Quaternary Research 22 : 160171.CrossRefGoogle Scholar
Myers, T. P., Voorhies, M. R., and Corner, R. G. 1980 Spiral Fractures and Bone Pseudotools at Paleontological Sites. American Antiquity 45 : 483490.CrossRefGoogle Scholar
Noe-Nygaard, N. 1989 Man-made Trace Fossils on Bones. Human Evolution 4 : 461491.CrossRefGoogle Scholar
Oakley, K. P. 1949 Man the Tool-Maker. University of Chicago Press, Chicago.Google Scholar
Oliver, J. 1989 Analogues and Site Context : Bone Damages from Shild Trap Cave (24CB91), Carbon County, Montana, U. S. A. In Bone Modification, edited by Bonnichsen, R. and Sorg, M., pp. 7398. Center for the Study of the First Americans, Orono, Maine.Google Scholar
Potts, R. 1988 Early Hominid Activities at Olduvai Gorge. Aldine DeGruyter, New York.Google Scholar
Potts, R., and Shipman, P. 1981 Cutmarks Made by Stone Tools on Bones from Olduvai Gorge, Tanzania. Nature 291 : 577580.Google Scholar
Sackett, J. R. 1966 Quantitative Analysis of Upper Paleolithic Stone Tools. American Anthropologist 68 : 356394.Google Scholar
Shipman, P. 1989 Altered Bones from Olduvai Gorge, Tanzania : Techniques, Problems, and Implications of Their Recognition. In Bone Modification, edited by Bonnichsen, R. and Sorg, M., pp. 317334. Center for the Study of the First Americans, Orono, Maine.Google Scholar
Speth, J. D. 1972 Mechanical Basis of Percussion Flaking. American Antiquity 37 : 3460.Google Scholar
Todd, L. C, and Rapson, D. J. 1988 Long Bone Fragmentation and Interpretation of Faunal Assemblages : Approaches to Comparative Analysis. Journal of Archaeological Science 15 : 307325.Google Scholar
Turner, A. 1989 Sample Selection, Schlepp Effects and Scavenging : the Implications of Partial Recovery for Interpretations of the Terrestrial Mammal Assemblage from Klasies River Mouth. Journal of Archaeological Science 16 : 111.CrossRefGoogle Scholar
Villa, P., and Mahieu, E. 1991 Breakage Patterns of Human Long Bones. Journal of Human Evolution 21 : 2748.Google Scholar
Villa, P., Bouville, C., Courtin, J., Helmer, D., Mahieu, E., Shipman, P., Belluomini, G., and Branca, M. 1986 Cannibalism in the Neolithic. Science 233 : 431436.Google Scholar
White, T. D. 1992 Prehistoric Cannibalism at Mancos 5MTUMR-2346. Princeton University Press, Princeton, New Jersey.Google Scholar
Wilmsen, E. N. 1970 Lithic Analysis and Cultural Inference : A Paleo-Indian Case. Anthropological Papers No. 16. University of Arizona, Tucson.Google Scholar
Wonnacott, T. H., and Wonnacott, R. J. 1977 Introduction to Statistics for Business and Economics. 2nd ed. John Wiley & Sons, New York.Google Scholar
Wylie, A. 1985 The Reaction Against Analogy. Advances in Archaeological Methods and Theory , vol. 8, edited by Schiffer, M. B., pp. 63111. Academic Press, New York.Google Scholar