Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T11:54:08.520Z Has data issue: false hasContentIssue false

On Equifinality in Faunal Analysis

Published online by Cambridge University Press:  20 January 2017

Alan R. Rogers*
Affiliation:
Department of Anthropology 270S 1400E RM 102 University of Utah Salt Lake City, UT 84112

Abstract

A faunal assemblage may be dominated by dense bones either because the soft ones have been transported away or because they have been gnawed beyond recognition. Archaeologists have often despaired of distinguishing between these hypotheses and have attributed the problem to equifinality-to the fact that different causes can produce identical outcomes. Yet under the models of transport and attrition studied here, these causes do not produce identical outcomes. It has been difficult to distinguish between them only because conventional statistical methods lack power. Using the new method of abcml (Analysis of Bone Counts by Maximum Likelihood), it is easy to distinguish assemblages that were deposited by different agents. It is also possible to distinguish between assemblages that have suffered differing degrees of attritional damage, but this distinction is more difficult to make. It is also shown that the conventional method for recognizing attritional damage in faunal assemblages is remarkably low in power. The paper closes with a discussion of the word "equifinality" itself.

Resumen

Resumen

Una colección de fauna puede consistir en su mayor parte de huesos densos porque los huesos blandos han sido transportados fuera o porque ellos han sido roídos més allá de reconocimiento. Frecuentemente los arqueólogos se han desesperado por distinguir entre estas hipótesis y han atribuído el problema a equifinalidad, hecho en que causas diferentes pueden producir resultados idénticos. Pero con los modelos de transporte y desgaste estudiados aquí, estas causas no producen resultados idénticos. Ha sido difícil distinguir entre ellos solamente porque los métodos convencionales de estadística no tienen suficientepoder. Usando el método nuevo de abcml (Analysis of Bone Counts by Maximum Likelihood [en español, Análisis de la Cuenta de Huesos por el Mátodo de Probabilidad Máxima]), es fácil de distinguir entre colecciones que estaban depositadas por agentes diferentes. También es posible distinguir entre colecciones que han sufrido niveles diversos de daño de desgaste, pero esta distinción es más difícil de hacer. También se ha demostrado que el método convencional para el reconocimiento de daño de desgaste en colecciones de fauna es notablemente débil en poder. El artículo termina con una discusión de la palabra "equifinalidad" en sí misma.

Type
Reports
Copyright
Copyright © Society for American Archaeology 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Bartram, L. E. 1993 Perspectives on Skeletal Part Profiles and Utility Curves. In From Bones to Behavior: Ethnoarchaeological and Experimental Contributions to the Interpretation of Faunal Remains, edited by Hudson, J., pp. 115137. Southern Illinois University, Carbondale, Illinois.Google Scholar
Bartram, L. E., and Marean, C. W. 1999 Explaining the “Klasies Pattern“: Kua Ethnoarchaeology, the Die Kelders Middle Stone Age Archaeofauna, Long Bone Fragmentation, and Carnivore Ravaging. Journal of Archaeological Science 26: 929.Google Scholar
Binford, L. R. 1978 Nunamiut Ethnoarchaeology. Academic Press, New York.Google Scholar
Binford, L. R. 1981 Bones: Ancient Men and Modern Myths. Academic Press, New York.Google Scholar
Bunn, H. T., Bartram, L. E., and Kroll, E. M. 1988 Variability in Bone Assemblage Formation from Hadza Hunting, Scavenging, and Carcass Processing. Journal of Anthropological Archaeology 1: A\2-A51. Google Scholar
Cleveland, W. S. 1985 The Elements of Graphing Data. Wadsworth, Monterey, California.Google Scholar
Cleveland, W. S., Grosse, E., and Shyu, W. M. 1992 Local Regression Models. In Statistical Models in S, edited by Chambers, J. M. and Hastie, T.J. pp. 309376. Wadsworth and Brooks/Cole, Pacific Grove, CA.Google Scholar
Grayson, D. K. 1988 Danger Cave, Last Supper Cave, and Hanging Rock Shelter: The Faunas. Anthropological Papers of the American Museum of Natural History 66. Google Scholar
Grayson, D. K. 1989 Bone Transport, Bone Destruction, and Reverse Utility Curves. Journal of Archaeological Science 16: 643652.Google Scholar
Haines-Young, R. H., and Petch, J. R. 1983 Multiple Working Hypotheses: Equifmality and the Study of Landforms. Transactions of the Institute of British Geographers, New Series 8: 458-66.Google Scholar
Kendall, M., and Stuart, A. 1979 The Advanced Theory of Statistics. II. Inference and Relationship. 4th ed. Macmillan, New York.Google Scholar
Klein, R. G., and Cruz-Uribe, K. 1984 The Analysis ofAnimal Bones from Archeological Sites. University of Chicago Press, Chicago.Google Scholar
Lam, Y. M., Chen, X., and Pearson, O. M. 1999 Intertaxonomic Variability in Patterns of Bone Density and the Differential Representation of Bovid, Cervid, and Equid Elements in the Archaeological Record. American Antiquity 64: 343362.Google Scholar
Lyman, R. L. 1985 Bone Frequencies: Differential Transport, in situ Destruction, and the MGUI. Journal of Archaeological Science 12: 221236.CrossRefGoogle Scholar
Lyman, R. L. 1993 Density-Mediated Attrition of Bone Assemblages: New Insights. In From Bones to Behavior: Ethnoarchaeological and Experimental Contributions to the Interpretation of Faunal Remains, edited by Hudson, J., pp. 324341. Southern Illinois University, Carbondale, Illinois.Google Scholar
Lyman, R. L. 1994 Vertebrate Taphonomy. Cambridge University Press, New York.Google Scholar
Marean, C. W, and Frey, C. J. 1997 Animal Bones from Caves to Cities: Reverse Utility Curves as Methodological Artifacts. American Antiquity 62: 698711.Google Scholar
Marean, C. W., and Spencer, L. M. 1991 Impact of Carnivore Ravaging on Zooarcheological Measures of Element Abundance. American Antiquity 56: 645658.Google Scholar
Marean, C. W., Spencer, L. M., Blumenschine, R. J., and Capaldo, S. D. 1992 Captive Hyaena Bone Choice and Destruction, the Schlepp Effect and Olduvai Archaeofaunas. Journal of Archaeological Science 19: 101121.Google Scholar
Metcalfe, D. and Jones, K. T. 1988 A Reconsideration ofAnimal Body-Part Utility Indices. American Antiquity 53: 486504.Google Scholar
O'Connell, J. F., Hawkes, K., and Blurton Jones, N. 1988 Hadza Hunting, Butchering, and Bone Transport and their Archaeological Implications. Journal of Anthropological Research 44: 113161.Google Scholar
O'Connell, J. F., Hawkes, K., and Blurton Jones, N. 1990 Reanalysis of Large Mammal Body Part Transport among the Hadza. Journal of Archaeological Science 17: 301316.Google Scholar
Perkins, D., and Daly, P. 1968 A Hunter's Village in Neolithic Turkey. Scientific American 219: 97106.Google Scholar
Rogers, A. R. 2000a Analysis of Bone Counts by Maximum Likelihood. Journal of Archaeological Science 27: 111125.Google Scholar
Rogers, A. R. 2000b On the Value of Soft Bones in Faunal Analysis. Journal of Archaeological Science, in press.Google Scholar
Rogers, A. R., and Broughton, J. M. 2000 Selective Transport ofAnimal Parts by Ancient Hunters: A New Statistical Method and an Application to the Emeryville Shellmound Fauna. Journal of Archaeological Science, in press.CrossRefGoogle Scholar
Silverman, B. W. 1986 Density Estimation for Statistics and Data Analysis. Chapman & Hall, London.Google Scholar
von Bertalanffy, L. 1940 Der Organismus als Physikalisches System Betrachtet. Naturwissenschaften 28: 521531.Google Scholar
von Bertalanffy, L. 1949 Problems of Organic Growth. Nature 163: 156158.Google Scholar
von Bertalanffy, L. 1968 General System Theory. George Braziller, New York. Google Scholar