Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T13:36:14.114Z Has data issue: false hasContentIssue false

A Neutral Model of Stone Raw Material Procurement

Published online by Cambridge University Press:  20 January 2017

P. Jeffrey Brantingham*
Affiliation:
Department of Anthropology, University of California, Los Angeles, 341 Haines Hall, Box 951553, Los Angeles, CA 90095-1553. Email: [email protected]

Abstract

Stone tool assemblage variability is considered a reliable proxy measure of adaptive variability. Raw material richness, transport distances, and the character of transported technologies are thought to signal (1) variation in raw material selectivity based on material quality and abundance, (2) optimization of time and energy costs associated with procurement of stone from spatially dispersed sources, (3) planning depth that weaves raw material procurement forays into foraging activities, and (4) risk minimization that sees materials transported in quantities and forms that are energetically economical and least likely to fail. This paper dispenses with assumptions that raw material type and abundance play any role in the organization of mobility and raw material procurement strategies. Rather, a behaviorally neutral agent-based model is developed involving a forager engaged in a random walk within a uniform environment. Raw material procurement in the model is dependent only upon random encounters with stone sources and the amount of available space in the mobile toolkit. Simulated richness-sample size relationships, frequencies of raw material transfers as a function of distance from source, and both quantity-distance and reduction intensity-distance relationships are qualitatively similar to commonly observed archaeological patterns. In some archaeological cases it may be difficult to reject the neutral model. At best, failure to reject the neutral model may mean that intervening processes (e.g., depositional time-averaging) have erased high-frequency adaptive signals in the data. At worst, we may have to admit the possibility that Paleolithic behavioral adaptations were sometimes not responsive to differences between stone raw material types in the ways implied by current archaeological theory.

Resumen

Resumen

Se considera la variabilidad de las colecciones de lítica como una medida confiable de la variabilidad de las adaptaciones al medio ambiente. La diversidad de materias primas, la distancia a sus yacimientos y la tecnología empleada reflejarían (1) la selección de la materia prima con base en su calidad y abundancia, (2) la optimización de gastos de tiempo y energía empleados en la obtención de materia lítica de yacimientos dispersos; (3) la integración anticipada de las visitas a los yacimientos con actividades de caza y recolección, y (4) una estrategia de reducción de riesgos que consiste en transportar la lítica en las cantidades y formas más eficientes del punto de vista energético y menos susceptibles al desgaste. En este trabajo prescindimos de suponer que el tipo y la abundancia de materia prima hayan jugado un papel en la organización de estrategias de obtención de ésta y de los desplazamientos en general. En su lugar, partimos de un modelo conductualmente neutral basado en el agente (individuo), como sería un cazador que se desplaza al azar en un medio ambiente uniforme. La obtención de materia prima depende entonces ú nicamente de hallazgos fortuitos de yacimientos de lítica y la cantidad de material que el cazador pueda agregar a su equipaje. La simulación de la relación entre la diversidad y el tamaño de la muestra, así como de la frecuencia de uso, la cantidad y la reducción del volumen en función de la distancia al yacimiento, revelan patrones que se asemejan, de manera cualitativa, a los que arroja a menudo el registro arqueológico. En algunos casos arqueológicos resultaría entonces difícil descartar tal modelo. En el mejor de los casos la imposibilidad de descartarlo señalaría que los procesos post-deposición (p.ej. la combinación de artefactos de distintas épocas en una sola colección) han borrado todos los indicadores de la adaptación. En el peor de los casos, nos veríamos obligados a reconocer que las adaptaciones del comportamiento paleolítico a veces no obedecían a las diferencias entre los tipos de materias primas de la lítica de la manera que sugieren las teorías vigentes en arqueología.

Type
Articles
Copyright
Copyright © The Society for American Archaeology 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Abrams, P. A. 2001 A World Without Competition. Nature 412:858859.CrossRefGoogle Scholar
Andrefsky, W. J. Jr. 1994 Raw-Material Availability and the Organization of Technology. American Antiquity 59:2134.Google Scholar
Bamforth, D. B. 2002 High-Tech Foragers? Folsom and Later Paleoindian Technology on the Great Plains. Journal of World Prehistory 16:5598.Google Scholar
Beck, C., K, A., Taylor, G. T. Jones, Fadem, C. M., Cook, C. R., and Millward, S. A. 2002 Rocks Are Heavy: Transport Costs and Paleoarchaic Quarry Behavior in the Great Basin. Journal of Anthropological Archaeology 21:481507.Google Scholar
Bell, G. 2001 Neutral Macroecology. Science 293:24132418. ,Google Scholar
Binford, L. R. 1979 Organization and Formation Processes: Looking at Curated Technologies. Journal of Anthropological Research 35:255273.Google Scholar
Binford, L. R. 1980 Willow Smoke and Dogs’ Tails: Hunter-Gatherer Settlement Systems and Archaeological Site Formation. American Antiquity 45:420.Google Scholar
Binford, L. R. 2001 Constructing Frames of Reference: An Analytical Method for Archaeological Theory Building Using Ethnographic and Environmental Data Sets. Berkeley: University of California Press, Berkeley.Google Scholar
Blades, B. S. 1999 Aurignacian Lithic Economy and Early Modern Human Mobility: New Perspectives from Classic Sites in the Vézère Valley of France. Journal of Human Evolution 37:91120.Google Scholar
Brantingham, P. J., Ma, H., Olsen, J. W., Gao, X., Madsen, D. B., and Rhode, D. E. 2003 Speculation on the Timing and Nature of Late Pleistocene Hunter-gatherer Colonization of the Tibetan Plateau. Chinese Science Bulletin, in press.Google Scholar
Brantingham, P. J., Olsen, J. W., Rech, J. A., and Krivoshapkin, A. I. 2000 Raw Material Quality and Prepared Core Technologies in Northeast Asia. Journal of Archaeological Science 27:255271.CrossRefGoogle Scholar
Brantingham, P. J, Olsen, J. W., and Schaller, G. B. 2001 Lithic Assemblages from the Chang Tang Region, Northern Tibet. Antiquity 75:319327.CrossRefGoogle Scholar
Bush, A. M., Powell, M. G., Arnold, W. S., Bert, T. M., and Daley, G. M. 2002 Time-averaging, Evolution and Morphologic Variation. Paleobiology 28:925.2.0.CO;2>CrossRefGoogle Scholar
Close, A. E. 2000 Reconstructing Movement in Prehistory. Journal of Archaeological Method and Theory 1:4977.Google Scholar
Connell, J. H. 1980 Diversity and the Coevolution of Competitors, or the Ghost of Competition Past. Oikos 35:131138.CrossRefGoogle Scholar
Conner, E. F., and Simberloff, D. 1979 The Assembly of Species Communities: Chance or Competition? Ecology 60:11321140.Google Scholar
Denny, M., and Gaines, S. 2002 Chance in Biology: Using Probability to Explore Nature. Princeton University Press, Princeton.Google Scholar
Dibble, H. L. 1995 Middle Paleolithic Scraper Reduction: Background, Clarification, and Review of the Evidence to Date. Journal of Archaeological Method and Theory 2:299368.Google Scholar
Féblot-Augustins, J. 1993 Mobility Strategies in the Late Middle Palaeolithic of Central Europe and Western Europe: Elements of Stability and Variability. Journal of Anthropological Archaeology 12:211265.CrossRefGoogle Scholar
Huelsenbeck, John P., and Bruce, Rannala 1997a Middle and Upper Paleolithic Raw Material Transfers in Western and Central Europe: Assessing the Pace of Change. Journal of Middle Atlantic Archaeology 13:5790.Google Scholar
Huelsenbeck, John P., and Bruce, Rannala 1997b La Circulation des Matières Premières au Paléolithique: Synthèse des Données Perspectives Comportementales, vol. 1. ERAUL 75, Liège.Google Scholar
Huelsenbeck, John P., and Bruce, Rannala 1997c La Circulation des Matières Premières au Paléolithique: Synthèse des Données Perspectives Comportementales, vol. 2. ERAUL 75, Liège.Google Scholar
Gamble, C. 1986 The Palaeolithic Settlement of Europe. Cambridge University Press, Cambridge.Google Scholar
Gamble, C. 1999 The Palaeolithic Societies of Europe. Cambridge University Press, Cambridge.Google Scholar
Geneste, J.-M. 1985 Analyse Lithique d’industries Moustériennes du Périgord: Une Approche Technologique du Comportement des Groupes Humains au Paléolithique Moyen. Unpublished Doctoral Dissertation, University of Bordeaux 1.Google Scholar
Geneste, J.-M. 1988 Les Industries de la Grotte Vaufrey: Technologie du Débitage, Économie et Circulation de la Matière Première. In La Grotte Vaufrey: Paléoenvironnement, Chronologie, Activités Humaines, edited by Rigaud, J.-P., pp. 441517. Mémoires de la SPF, Tome 19. Société Préhistorique Française, Paris.Google Scholar
Geneste, J.-M. 1989 Economie des Resources Lithiques dans Mousterien du Sud-Ouest de la France. In L’Homme de Néandertal 8, La Subsistance, edited by Patou, M. and Freeman, L. G., pp. 7597. ERAUL, Liège.Google Scholar
Grayson, D. K. 1984 Quantitative Zooarchaeology: Topics in the Analysis of Archaeological Faunas. Academic Press, New York.Google Scholar
Grayson, D. K., and Delpech, F. 1998 Changing Diet Breadth in the Early Upper Paleolithic of Southwestern France. Journal of Archaeological Science 25:11191129.Google Scholar
Grayson, D. K., and Delpech, F. 2002 Specialized Early Upper Paleolithic Hunters in Southwestern France? Journal of Archaeological Science 29:14391449.CrossRefGoogle Scholar
Gotelli, N. J., and Graves, G. R. 1996 Null Models in Ecology. Smithsonian Institution Press, Washington, D.C. Google Scholar
Hayek, L.-A. C., and Buzas, M. A. 1997 Surveying Natural Populations. Columbia University Press, New York.Google Scholar
Hubbell, S. P. 2001 The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton.Google Scholar
Kelly, R. L. 1995 The Foraging Spectrum: Diversity in Hunter-Gatherer Lifeways. Smithsonian Institution Press, Washington, D.C. Google Scholar
Kimura, M. 1983 The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Kimura, Y. 2002 Examining Time Trends in the Oldowan Technology at Beds I and II, Olduvai Gorge. Journal of Human Evolution 43:291321.CrossRefGoogle ScholarPubMed
Kowalewski, M. 1996 Time-Averaging, Overcompleteness, and the Geological Record. The Geology Journal 104:317326.Google Scholar
Kowalewski, M., Goodfriend, G. A., and Flessa, K. W. 1998 High-resolution Estimates of Temporal Mixing within Shell Beds: The Evils and Virtues of Time-averaging. Paleobiology 24:287304.Google Scholar
Kuhn, S. L. 1994 A Formal Approach to the Design and Assembly of Mobile Toolkits. American Antiquity 59:426442.Google Scholar
Kuhn, S. L. 1995 Mousterian Lithic Technology: An Ecological Perspective. Princeton University Press, Princeton.Google Scholar
MacArthur, R. H. 1960 On the Relative Abundance of Species. The American Naturalist 94:2536.Google Scholar
MacArthur, R. H., and Levins, R. 1967 The Limiting Similarity, Convergence and Divergence of Coexisting Species. The American Naturalist 101:377385.Google Scholar
Martinez, M. M. 1998 Differential Raw Material Use in the Middle Pleistocene of Spain: Evidence from Sierra Atapuerca, Torralba, Ambrona and Aridos. Cambridge Archaeological Journal 8:1528.CrossRefGoogle Scholar
Mellars, P. A. 1996 The Neandertal Legacy: An Archaeological Perspective from Western Europe. Princeton University Press, Princeton.Google Scholar
Metcalfe, D., and Barlow, K. R. 1992 A Model for Exploring the Optimal Tradeoff between Field Processing and Transport. American Anthropologist 94:340356.Google Scholar
Morala, A., and Turq, A. 1990 Les Stratégies d’Exploitation du Milieu Minéral, du Riss a l’Holocène en Haut-Agenais (Sud-Ouest de la France). In Le Silex de sa Genèse à l’Outil, edited by Sérone-Vivien, M.- R. and Lenoir, M., pp. 405414. CNRS, Paris.Google Scholar
Neiman, F. D. 1995 Stylistic Variation in Evolutionary Perspective: Inferences from Decorative Diversity and Interassemblage Distance in Illinois Woodland Ceramic Assemblages. American Antiquity 60:736.Google Scholar
Nelson, M. C. 1991 The Study of Technological Organization. Archaeological Method and Theory 3:57100.Google Scholar
Potts, R. 1994 Variables Versus Models of Early Pleistocene Hominid Land Use. Journal of Human Evolution 27:724.CrossRefGoogle Scholar
Rensink, E., Kolen, J., and Spieksma, A. 1991 Patterns of Raw Material Distribution in the Upper Pleistocene of Northwestern and Central Europe. In Row Material Economies and Prehistoric Hunter-Gatherers, edited by Montet-White, A. and Holen, S., pp. 141159. University of Kansas Publications in Anthropology 19, Lawrence.Google Scholar
Roebroeks, W., Kolen, J., and Rensink, E. 1988 Planning Depth, Anticipation and the Organization of Middle Paleolithic Technology: The “Archaic Natives” Meet Eve's Descendants. Helinium 28:1734.Google Scholar
Roughgarden, J. 1983 Competition Theory in Community Ecology. The American Naturalist 122:583601.CrossRefGoogle Scholar
Schiffer, M. B. 1987 Formation Processes of the Archaeological Record. University of New Mexico Press, Albuquerque.Google Scholar
Schoener, T. H. 1983 Field Experiments in Interspecific Competition. The American Naturalist 122:240.Google Scholar
Shennan, S. J., and Wilkinson, J. R. 2001 Ceramic Style Change and Neutral Evolution: A Case Study from Neolithic Europe. American Antiquity 66:577593.Google Scholar
Shott, M. J. 1989 On Tool-Class Use Lives and the Formation of Archaeological Assemblages. American Antiquity 54:930.Google Scholar
Simberloff, D. 1983 Competition Theory, Hypothesis-Testing, and Other Community Ecological Buzzwords. The American Naturalist 122:626635.Google Scholar
Smith, E. A. 1991 Inujjuamiut Foraging Strategies: Evolutionary Ecology of an Arctic Hunting Economy. Aldine de Gruyter, New York.Google Scholar
Stern, N. 1994 The Implications of Time-Averaging for Reconstructing the Land-Use Patterns of Early Tool-Using Hominids. Journal of Human Evolution 27:89105.CrossRefGoogle Scholar
Torrence, R. 1989 Time, Energy and Stone Tools. Cambridge University Press, Cambridge.Google Scholar
Turchin, P. 1998 Quantitative Analysis of Movement: Measuring and Modeling Population Redistribution in Animals and Plants. Sinauer Associates, Sunderland.Google Scholar
Varien, M. D., and Potter, J. M. 1997 Unpacking the Discard Equation: Simulating the Accumulation of Artifacts in the Archaeological Record. American Antiquity 62:197213.Google Scholar
Weiher, E., and Keddy, P. A. 1999 Assembly Rules as Trait-Based Constraints on Community Composition. In Ecological Assembly Rules, edited by Weiher, E. and Keddy, P. A., pp. 251271. Cambridge University Press, Cambridge.Google Scholar