Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-08T08:24:38.417Z Has data issue: false hasContentIssue false

High Resolution Radiocarbon Dating at the Gerstle River Site, Central Alaska

Published online by Cambridge University Press:  20 January 2017

Ben A. Potter
Affiliation:
Department of Anthropology, University of Alaska Fairbanks, 310 Eielson Building, Fairbanks, Alaska 99775-7720 ([email protected])
Joshua D. Reuther
Affiliation:
School of Anthropology, University of Arizona, 1009 E. South Campus Drive, Tucson, Arizona 85721-0030 ([email protected])
Bradley A. Newbold
Affiliation:
Department of Anthropology, Washington State University, , Pullman, Washington 99164
David T. Yoder
Affiliation:
William Self Associates, , Cedar City, Utah 84720

Abstract

Early Holocene cultural material at Gerstle River, central Alaska, provides excellent contextual controls for examining variability in radiocarbon dating. Over 4,000 bone and teeth fragments are directly associated with over 7,000 lithic artifacts and 10 discrete charcoal-rich hearths in a thin occupation layer (∼10 cm vertical thickness) within well-stratified loess deposits. Radiocarbon dating of the hearth features indicates overlapping ages at 2σ, suggesting contemporaneity. This study uses the high level of resolution at Gerstle River to evaluate systematic radiocarbon variation due to different materials (collagen and charcoal), different pretreatments of collagen (regular and ultrafiltered), and interlaboratory variation through paired bone and hearth charcoal dates, split samples, and cross-checks. Accurately dating bone collagen is important given the closer association of dated samples with human activities (e.g., butchering) compared with charcoal fragments in certain contexts (e.g., driftwood, paleosols, or alluvial deposits). This study demonstrates the efficacy of bone collagen dating with ultrafiltration to counter potential site-specific contamination. These results also indicate that even in high-resolution situations with little evidence for old-wood effect and contamination, considerable variability can exist among cross-check and even split samples from single pieces of charcoal from short-lived species.

El material cultural del Holoceno Temprano en Gerstle River, Alaska central, proporciona un excelente control de contexto para la examinación de la variabilidad en la dotación por radiocarbono. Más de 4.000 fragmentos de huesos y dientes son directamente asociadas con más de 7.000 artefactos líicos y 10 hogares discretos conteniendo carbón en una ocupación de una capa delgada (∼ 10 cm de espesor vertical) depósitos de loess bien estratificados. La dotación por radiocarbono de las características del hogar indica una superposición de edades entre 2σ lo que sugiere la contemporaneidad. Este estudio utiliza el alto nivel de resolución en Gerstle River para evaluar la variación de radiocarbono sistemática por razón de diversos materiales (colágeno y carbón), diferentes pretratamientos de colágeno (regular y ultrafiltrado), y variación entre laboratorios a través de datación del hueso emparejado y las fechas de carbón de hogar, muestras divididas, y comprobaciones cruzadas. Este estudio demuestra la eficacia de colágeno de los huesos que datan de ultrafütración contra la contaminación potencial. Efectivamente datación por colágeno de los huesos es importante por asociación en general, más cerca de las muestras de fecha con las actividades humanas (por ejemplo, despiece) de fragmentos de carbón vegetal. Estos resultados indican también que incluso en situaciones de alta resolución con poca evidencia de efecto de madera vieja y la contaminación, puede existir una variabilidad considerable entre cotejo e incluso las muestras divididas de solas piezas de carbón vegetal de especies de vida corta.

Type
Reports
Copyright
Copyright © The Society for American Archaeology 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Ambrose, Stanley H., 1990 Preparation and Characterization of Bone and Tooth Collagen for Stable Carbon and Nitrogen Isotope Analysis. Journal of Archaeological Science 17(1990):431451.Google Scholar
Audouze, Françoise., and Enloe, James G. 1997 High Resolution Archaeology at Verberie: Limitations and Interpretations. World Archaeology 29(2):195207.CrossRefGoogle Scholar
Balzer, A., Gleixner, G., Grupe, G., Schmidt, H.-L., Schramm, S., and Turban-Just, S. 1997 In Vitro Decomposition of Bone Collagen by Soil Bacteria: The Implications for Stable Isotope Analysis in Archaeometry. Archaeometry 39(2):415429.Google Scholar
Beaumont, Will, Beverly, Robert, Southon, John, and Taylor, R.E. 2010 Bone Preparation at the KCCAMS Laboratory. Nuclear Instruments and Methods in Physics Research B 268(7–8):906909 CrossRefGoogle Scholar
Binford, Lewis R., 1981 Bones: Ancient Men and Modern Myths. Academic Press, New York.Google Scholar
Boaretto, Elisabetta, Bryant, Charlotte, Carmi, Israel, Cook, Gordon T., Gulliksen, Steinar, Harkness, Douglas D., Heinemeier, Jan, McClure, John, McGee, Edward, Naysmith, Philip, Possnert, Goran, Marian Scott, E., van der Plicht, Hans, and van Strydonck, Mark 2003 How Reliable Are Radiocarbon Laboratories? A Report on the Fourth International Radiocarbon Inter-comparison (FIRI) (1998–2001). Antiquity 77(295):146154.CrossRefGoogle Scholar
Bowers, Peter M., and Reuther, Joshua D. 2008 AMS Re-dating of the Carlo Creek Site, Nenana Valley, Central Alaska. Current Research in the Pleistocene 25:5861.Google Scholar
Brain, Charles K., 1981 The Hunters or the Hunted. University of Chicago Press, Chicago.Google Scholar
Brock, Fiona, Ramsey, Christopher Bronk, and Higham, Thomas 2007 Quality Assurance of Ultrafiltered Bone Dating. Radiocarbon 49(2):187192.Google Scholar
Ramsey, Bronk, Christopher, Thomas Higham, Bowles, Angela, and Hedges, Robert 2004 Improvements to the Pretreatment of Bone at Oxford. Radiocarbon 46(1):155163.Google Scholar
Brock, Fiona, Higham, Thomas, Ditchfield, P., and Ramsey, Christopher Bronk 2010 Current Pretreatment Methods for AMS Radiocarbon Dating at the Oxford Radiocarbon Accelerator Unit (ORAV). Radiocarbon 52(1):103112.Google Scholar
Brown, T.A., Nelson, D.E., Vogel, J.S., and Southon, J.R. 1988 Improved Collagen Extraction by Modified Longin Method. Radiocarbon 30(2):171177.CrossRefGoogle Scholar
Chatters, James G., 1987 Hunter-Gatherer Adaptations and Assemblage Structure. Journal of Anthropological Research 6:336ȁ375.Google Scholar
Cohen-Ofri, Ilit, Weiner, Lev, Boaretto, Elisabetta, Mintz, Genia, and Weiner, Steve 2006 Modern and Fossil Charcoal: Aspects of Structure and Diagenesis. Journal of Archaeological Science 33:428439.CrossRefGoogle Scholar
Dean, J.S., 1978 Independent Dating and Archaeological Analysis. In Advances in Archaeological Method and Theory, Vol. 1, edited by M.B. Schiffer, pp. 223255, Academic Press, New York.Google Scholar
DeNiro, Michael J., Schoeninger, Margaret J., and Hastorf, Christine A. 1985 Effect of Heating on the Stable Carbon and Nitrogen Isotope Ratios Of Bone Collagen, Journal of Archaeological Science 12:17.Google Scholar
DeNiro, Michael J., and Weiner, S. 1988 Organic Matter within Crystalline Aggregates of Hydroxyapatite: A New Substrate for Stable Isotopic and Possibly Other Biogeochemical Analyses of Bone. Geochimica et Cosmochimica Acta 52:24152423.CrossRefGoogle Scholar
Dilley, Thomas E., 1998 Late Quaternary Loess Stratigraphy, Soils, and Environments of the Shaw Creek Flats Paleoindian Sites, Tanana Valley, Alaska. PhD dissertation, Department of Geosciences, University of Arizona, Tucson.Google Scholar
Dobberstein, Reimer, C., Collins, Matthew J., Craig, O. E., Taylor, G., Penkman, K. E. H., and Ritz-Timme, S. 2009 Archaeological Collagen: Why Worry About Collagen Diagenesis? Archaeological and Anthropological Sciences 1:31–42.CrossRefGoogle Scholar
Enloe, James G., 1993 Ethnoarchaeology of Marrow Cracking: Implications for the Recognition of Prehistoric Subsistence Organization. In From Bones to Behavior: Ethnoarchaeological and Experimental Contributions to the Interpretation of Faunal Remains, edited by J. Hudson. Center for Archaeological Investigations, Occasional Paper No. 21. Southern Illinois University.Google Scholar
Erlandson, J., Walser, R., Maxwell, H., Bigelow, N., Higgs, A., and Wilber, J. 1991 Two Early Sites of Eastern Beringia: Context and Chronology in Alaska Interior Archaeology. Radiocarbon 3(1):3550.CrossRefGoogle Scholar
George, Debra, Southon, John, and Taylor, R. E. 2005 Resolving the Anomalous Radiocarbon Determination on Mastodon Bone from Monte Verde, Chile. American Antiquity 70:766772.CrossRefGoogle Scholar
Gillespie, Richard, 1989 Fundamentals of Bone Degradation Chemistry: Collagen is not “the Way”. Radiocarbon 31(3):239246.CrossRefGoogle Scholar
Graf, Kelly E., 2009 “The Good, the Bad, and the Ugly”: Evaluating the Radiocarbon Chronology of the Middle and late Upper Paleolithic in the Enisei River Valley, South-Central Siberia. Journal of Archaeological Science 36:694707.CrossRefGoogle Scholar
Harbeck, Michaela, and Grupe, Gisela 2009 Experimental Chemical Degradation Compared to Natural Diagenetic Alteration of Collagen: Implications for Collagen Quality Indicators for Stable Isotope Analysis. Archaeological and Anthropological Sciences 1:4357.Google Scholar
Hassan, A.A., Termine, J. D., and Haynes, C. V. Jr. 1977 Mineralogical Studies on Bone Apatite and Their Implications for Radiocarbon Dating. Radiocarbon 19(3): 364374.CrossRefGoogle Scholar
Haynes, C.V., 1967 Bone Organic Matter and Radiocarbon Dating. In Radioactive Dating and Methods of Low-Level Counting, pp. 163167. International Atomic Energy Agency, Vienna.Google Scholar
Haynes, C.V., 1968 Radiocarbon: Analysis of Inorganic Carbon of Fossil Bone and Enamel. Science 161(3842):687688.CrossRefGoogle ScholarPubMed
Haynes, C.V. Jr., Beukens, R.P., Jull, A J.T., and Davis, O.K. 1992 New Radiocarbon Dates for Some Old Folsom Sites: Accelerator Technology. In Ice Age Hunters of the Rockies, edited by D.J. Stanford and J.S. Day, pp. 83100). Denver Museum of Natural History and University Press of Colorado, Denver.Google Scholar
Hedges, R.E.M., 2000 Radiocarbon Dating. In Modern Analytical Methods in Art and Archaeology, edited by Enrico Ciliberto and Giuseppe Spoto, pp. 465502. Chemical Analysis Series, Vol. 155. John Wiley and Sons, Inc., New York.Google Scholar
Hedges, R. E. M., and Law, L. A. 1989 The Radiocarbon Dating of Bone. Applied Geochemistry 4:249253.Google Scholar
Hedges, R. E. M., and van Klinken, G. J. 1992 A Review of Current Approaches in the Pretreatment of Bone for Radiocarbon Dating by AMS. Radiocarbon 34(3):279291.CrossRefGoogle Scholar
Higham, Thomas F. G., and Jacobi, R. M., and Ramsey, Christopher Bronk 2006a AMS Radiocarbon Dating of Ancient Bone Using Ultrafiltration. Radiocarbon 48(2):179195.Google Scholar
Higham, Thomas, Ramsey, Christopher Bronk, Karavanic, I., Smith, F.H. and Trinkhaus, E. 2006b Revised Direct Radiocarbon Dating of the Vindija G, Upper Paleolithic Neanderthals. Proceedings of the National Academy of Sciences 103(3):553557.CrossRefGoogle Scholar
Hodgins, G. W. L., Gann, J. P., Vonarx, A. J., and Jull, A. J. T. 2007 A New Semiautomated Acid-Base-Acid Extraction System for Radiocarbon Samples. Unpublished manuscript in possession of the authors.Google Scholar
Holliday, Vance T., Johnson, Eileen, and Stafford, Thomas W. Jr. 1999 AMS Radiocarbon Dating of the Type Plainview and Firstview (Paleoindian) Assemblages: The Agony and Ecstasy. American Antiquity 64:444454.CrossRefGoogle Scholar
Huls, M. C., Grootes, P. M., and Nadeau, M.-J. 2007 How Clean is Ultrafiltration Cleaning of Bone Collagen? Radiocarbon 49(2): 193200.Google Scholar
Huls, M. C., Grootes, P. M., and Nadeau, M.-J. 2009 Ultrafiltration: Boon or Bane? Radiocarbon 51(2):613625.Google Scholar
Jacobi, R.M., Higham, Thomas F.G., and Ramsey, Christopher Bronk 2006 AMS Radiocarbon Dating of Middle and Upper Palaeolithic Bone in the British Isles: Improved Reliability Using Ultrafiltration. Journal of Quaternary Science 21(5):557573.Google Scholar
Jöris, Olaf, Fernandez, Esteban Álvarez, and Weniger, Bernhard 2003 Radiocarbon Evidence of the Middle to Upper Pale-olithic Transition in Southwestern Europe. Trabajos de Pre-historia 60(2):1538.Google Scholar
Jull, A.J.T., Burr, G.S., McHargue, L.R., Lange, T.E., Lifton, N.A., Beck, J.W., Donahue, D.J., and Lal, D. 2004 New Frontiers in Dating of Geological, Paleoclimatic and Anthropological Applications Using Accelerator Mass Spectrometric Measurements of l4C and l0Be in Diverse Samples. Global and Planetary Change 41:309323.CrossRefGoogle Scholar
Kuzmin, Y. V., 2009 Comments on Graf, Journal of Archaeological Science 36, 2009 ‘“The Good, the Bad, and the Ugly”: evaluating the radiocarbon chronology of the middle and late Upper Paleolithic in the Enisei River valley, south-central Siberia.’ Journal of Archaeological Science 36:27302733.Google Scholar
Kunz, M. L., Bever, M., and Adkins, C. 2003 The Mesa Site: Paleoindians Above the Arctic Circle. BLM-Alaska Open File Report 86. U. S. Department of the Interior, Bureau of Land Management, Anchorage, Alaska.Google Scholar
Law, I.A., and Hedges, R.E.M. 1989 A Semi-Automated Bone Pretreatment System and the Pretreatment of Older and Contaminated Samples. Radiocarbon 31(3):247253.Google Scholar
Leroi-Gourhan, A., and Brézillon, M. 1966 L’Habitation Magdalénienne no. 1 de Pincevent prés Montereau (Seine-et-Marne). Gallia Préhistorie 9(2):263385.Google Scholar
Long, A., Wilson, A. T., Ernst, R. D., Gore, B. H., and Hare, P. E. 1989 AMS Radiocarbon Dating of Bones at Arizona. Radiocarbon 31(3):231238.CrossRefGoogle Scholar
Longin, R., 1971 New Method of Collagen Extraction for Radiocarbon Dating. Nature 230:241242.Google Scholar
Lupo, Karen D., 1995 Hadza Bone Assemblages and Hyena Attrition: An Ethnographic Example of the Influence of Cooking and Mode of Discard on the Intensity of Scavenger Ravaging. Journal of Anthropological Archaeology 14:288314.Google Scholar
Marean, Curtis W., and Spencer, Lillian M. 1991 Impact of Carnivore Ravaging on Zooarchaeological Measures of Element Abundance. American Antiquity 56:645658.Google Scholar
Newell, R. R., and Constandse-Westermann, T. S. 1996 The Use of Ethnographic Analyses for Researching Late Palaeolithic Settlement Systems, Settlement Patterns and Land Use in the Northwest European Plain. World Archaeology 27(3):372388.Google Scholar
Nielsen-Marsh, C. M., and Hedges, R. E. M. 2000 Patterns of Diagenesis in Bone I: The Effects of Site Environments. Journal of Archaeological Science 27:11391150.Google Scholar
Niklaus, Th.R., Bonani, G., Suter, M., and Wolfli, W. 1994 Systematic Investigation of Uncertainties in Radio-carbon Dating Due to Fluctuations in the Calibration Curve. Nuclear Instruments and Methods in Physics Research B92:194200.Google Scholar
Pettitt, P. B., Davies, W., Gamble, C. S., and Richards, M. B. 2003 Palaeolithic Radiocarbon Chronology: Quantifying Our Confidence Beyond Two Half-Lives. Journal of Archaeological Science 30:16851693 Google Scholar
Potter, Ben A., 2005 Site Structure and Organization in Central Alaska: Archaeological Investigations at Gerstle River. Ph.D. dissertation, Department of Anthropology, University of Alaska Fairbanks, Fairbanks.Google Scholar
Potter, Ben A., 2007 Models of Faunal Processing and Economy in Early Holocene Interior Alaska. Environmental Archaeology 12(1):323.Google Scholar
Potter, Ben A., Reuther, Joshua D., Bowers, P. M., and Gelvin-Reymiller, C. 2007 Results of the 2007 Phase II Cultural Resource Survey of Proposed Alaska Railroad Northern Rail Extension Routes, Alaska. Report prepared for ICF Consulting Services, LLC, by Northern Land Use Research, Inc., Fairbanks, Alaska.Google Scholar
Reimer, Paula J., Mike, G. L. Baillie, Bard, Edouard, Bayliss, Alex, Warren Beck, J., Bertrand, Chanda J. H., Blackwell, Paul G., Buck, Caitlin E., Burr, George S., Cutler, Kirsten B., Damon, Paul E., Lawrence Edwards, R., Fairbanks, Richard G., Friedrich, Michael, Guilderson, Thomas P., Hogg, Alan G., Hughen, Konrad A., Kromer, Bernd, Gerry McCormac, F., Manning, Sturt, Ramsey, Christopher Bronk, Reimer, Ron W., Remmele, Sabine, Southon, John R., Stuiver, Minze, Talamo, Sahra, Taylor, F. W., van der Plicht, Johannes, and Weyhenmeyer, Constanze E.. 2004 IntCal04 Terrestrial Radiocarbon Age Calibration, 0–26 Cal Kyr B.P. Radiocarbon 46:10291058.Google Scholar
Reimer, Paula J., Baillie, Mike G. L., Bard, Edouard, Bayliss, Alex, Warren Beck, J., Blackwell, Paul G., Ramsey, Christopher Bronk, Buck, Caitlin E., Burr, George S., Lawrence Edwards, R., Friedrich, Michael, Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, Timothy J., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., McCormac, F. G., Manning, S. W., Reimer, Ron W., Richards, D. A., Southon, John R., Talamo, Sahra, Turney, C. S. M., van der Plicht, Johannes, Weyhenmeyer, Constanze E. 2009 IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):111150.Google Scholar
Reuther, Joshua D., Potter, Ben A., and Hodgins, G. 2010 Ultrafiltration Pretreatment Procedures in Radiocarbon Dating of Bone: An Example from the Gerstle River Site, Interior Central Alaska. Manuscript in possession of authors.Google Scholar
Schiffer, Michael B., 1986 Radiocarbon Dating and the “Old Wood” Problem: the Case of the Hohokam Chronology. Journal of Archaeological Science 13:1330.Google Scholar
Shott, Michael J., 1992 Radiocarbon Dating as a Probabilistic Technique: The Childers Site and Late Woodland Occupation in the Ohio Valley. American Antiquity 57(2):202230.Google Scholar
Spriggs, M., 1989 The Dating of the Island Southeast Asian Neolithic: An Attempt at Chronometric Hygiene and Linguistic Correlation. Antiquity 63:587613.CrossRefGoogle Scholar
Stafford, T. W., Brendel, K., and Duhamel, R. C. 1988 Radiocarbon, 13C and 15N Analysis of Fossil Bone: Removal of Humates with XAD-2 Resin. Geocehmica et Cosmochimica Acta 52:21972206.Google Scholar
Stafford, T.W. Jr., Jull, A.J.T., Brendel, K., Duhamel, R.G., and Donahue, D. 1987 Study of Bone Radiocarbon Dating Accuracy at the University of Arizona NSF Accelerator Facility for Radioisotopes Analysis. Radiocarbon 29(1):2444.Google Scholar
Stafford, T.W. Jr., Hare, P.E., Currie, L., Jull, A.J.T. and Donahue, D.J. 1991 Accelerator Radiocarbon Dating at the Molecular Level. Journal of Archaeological Science 18:3572.Google Scholar
Stiner, M.C., 1994 Honor Among Thieves: A Zooarchaeological Study of Neanderthal Ecology. Princeton University Press, New Jersey.Google Scholar
Stuiver, Minze, and Reimer, Paula J. 1993 Extended l4C database and revised CALIB radiocarbon calibration program. Radiocarbon 35:215230.Google Scholar
Surovell, Todd A., 2000 Radiocarbon Dating of Bone Apatite by Step Heating. Geoarchaeology 15(6):591608.Google Scholar
Tamers, M. A., and Pearson, F. J. Jr. 1965 Validity of Radiocarbon Dates on Bone. Nature 208(5015):10531055.Google Scholar
Taylor, R.E., 1987 Radiocarbon Dating: An Archaeological Perspective. Academic Press, Orlando.Google Scholar
Taylor, R.E., 1992 Radiocarbon Dating of Bone: To Collagen and Beyond. In Radiocarbon After Four Decades: An Interdisciplinary Perspective, edited by R. E. Taylor, A. Long, and R. S. Kra, pp, 375402. Springer Verlag, New York.CrossRefGoogle Scholar
Todd, L. C., and Rapson, D. J. 1988 Long Bone Fragmentation and Interpretation of Faunal Assemblages: Approaches to Comparative Analysis. Journal of Archaeological Science 15:307325.Google Scholar
Turney, C.S.M., Flannery, T.F., Roberts, R.G., Reid, C., Fifield, L.K., Higham, T.F.G., Jacobs, Z., Kemp, N., Colhoun, E.A., Kalon, R.M., and Ogle, N. 2008 Late-surviving Megafauna in Tasmania, Australia, Implicate Human Involvement in Their Extinction. Proceedings of the National Academy of Sciences 105(34):1215012153.Google Scholar
Tuross, Noreen, 2002 Alterations in Fossil Collagen. Archaeometry 3:427434.Google Scholar
van Klinken, G. J., 1999 Bone Collagen Quality Indicators for Paleodietary and Radiocarbon Measurements. Journal of Archaeological Science 26:687695.CrossRefGoogle Scholar
Ward, G.K., and Wilson, S.R. 1978 Procedures for Comparing and Combining Radiocarbon Age Determinations: A Critique. Archaeometry 20:1931.Google Scholar
Waterbolk, H. T., 1971 Working with Radiocarbon Dates. Proceedings of the Prehistoric Society 37:1533.CrossRefGoogle Scholar
Waters, M. R., and Stafford, T. W. Jr. 2007 Redefining the Age of Clovis: Implications for the Peopling of the Americas. Science 315:11221126.Google Scholar
Yizhaq, M., Mintz, G., Cohen, I., Khalaily, H., Weiner, S., and Boaretto, E. 2005 Quality Controlled Radiocarbon Dating of Bones and Charcoal from the Early Pre-Pottery Neolithic (PPNB) of Motza (Israel). Radiocarbon 47(2):193206 Google Scholar
Zilhão, J., and d’Errico, F. 1999 The chronology and taphonomy of the earliest Aurignacian and its implications for the understanding of Neanderthal Extinction. Journal of World Prehistory 13:168.Google Scholar