Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-20T06:19:15.589Z Has data issue: false hasContentIssue false

FOLSOM MAMMOTH HUNTERS? THE TERMINAL PLEISTOCENE ASSEMBLAGE FROM OWL CAVE (10BV30), WASDEN SITE, IDAHO

Published online by Cambridge University Press:  27 June 2017

L. Suzann Henrikson*
Affiliation:
Idaho National Laboratory, 2525 North Fremont Ave. Idaho Falls, ID 83415, USA
David A. Byers
Affiliation:
Department of Sociology, Social Work and Anthropology, Old Main 245C, Utah State University, Logan, UT 84322, USA
Robert M. Yohe II
Affiliation:
California State University, Bakersfield, 9001 Stockdale Highway, Bakersfield, CA 93311, USA
Matthew M. DeCarlo
Affiliation:
California State University, Bakersfield, 9001 Stockdale Highway, Bakersfield, CA 93311, USA
Gene L. Titmus
Affiliation:
deceased
*
([email protected], corresponding author)

Abstract

The 1960s and 1970s excavations at Owl Cave (10BV30) recovered mammoth bone and Folsom-like points from the same strata, suggesting evidence for a post-Clovis mammoth kill. However, a synthesis of the excavation data was never published, and the locality has since been purged from the roster of sites with human/extinct megafauna associations. Here, we present dates on bone from the oldest stratum, review provenience data, conduct a bone-surface modification study, and present the results of a protein-residue analysis. Our study fails to make the case for mammoth hunting by Folsom peoples. Although two of the point fragments tested positive for horse or elephant protein, recent AMS dates indicate that all of the mammoth remains predate Folsom, and horse remains are absent from the Owl Cave collection. Further, no unambiguously cultural surface modifications were identified on any of the mammoth remains. Given the available data, the Owl Cave deposits are most parsimoniously read as containing a Folsom-age occupation in a buried context, the first of its kind in the desert West, but one nonetheless part of a palimpsest of terminal Pleistocene materials.

Durante excavaciones de Owl Cave (10BV30) en Idaho en las décadas de 1960 y 1970 fueron recuperados de los mismos estratos huesos de mamut y puntas de proyectil del estilo Folsom, sugiriendo que se tratara de un yacimiento matanza de mamuts de la era post-Clovis. Sin embargo, nunca se publicó una síntesis de los datos de la excavación y la localidad ha sido removida de la lista de sitios con evidencia de actividad humana asociada con megafauna extinta. Aquí presentamos el fechamiento de muestras de hueso del estrato más antiguo de la cueva, revisamos sus datos de procedencia, realizamos un estudio de la superficie de los huesos, y presentamos los resultados de un análisis de residuos proteicos. Nuestro estudio no logra comprobar la evidencia de cacería de mamut por la cultura Folsom. Aunque en dos de los fragmentos de proyectil se detectaron restos de proteína de caballo o elefante, fechados recientes por AMS indican que todos los restos de mamut preceden el yacimiento Folsom y no hay restos de caballo en la colección de Owl Cave. Además, no se identificó ninguna modificación de superficie de claro origen cultural en los restos de mamut. La interpretación más parsimoniosa de los datos disponibles es que los depósitos de Owl Cave contienen una ocupación de la época Folsom en un contexto enterrado, el primero de este tipo en el desierto del Oeste, pero que sin embargo es parte de un palimpsesto de materiales del Pleistoceno terminal.

Type
Reports
Copyright
Copyright © 2017 by the Society for American Archaeology 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Armstrong, L. Suzann Henrikson, Trent, L., Gilbert, Hollie K., and Pace, Brenda R. 2016 Pluvial Lake Terreton: Building a Multidisciplinary Dataset to Understand Terminal Pleistocene/Holocene Occupations. Paper presented at the 35th Great Basin Anthropological Conference, Reno, Nevada.Google Scholar
Barnard, Hans, Shoemaker, Lori, Rider, Micala, Craig, Oliver E., Parr, Robert E., Sutton, Mark Q., and Yohe, Robert M. II 2007 Introduction to the Analysis of Protein Residues in Archaeological Ceramics. In Theory and Practice of Archaeological Residue Analysis, edited by Hans Barnard and Eerkens, Jelmer W., pp. 216228. British Archaeological Reports International Series 1650. BAR, Oxford.Google Scholar
Beck, Charlotte, and Jones, George T. 2010 Clovis and Western Stemmed: Population Migration and the Meeting of Two Technologies in the Intermountain West. American Antiquity 75:81116.Google Scholar
Behrensmeyer, Anna K., and Kidwell, Susan M. 1985 Taphonomy's Contributions to Paleobiology. Paleobiology 11:105119.Google Scholar
Blumenschine, Robert J., Marean, Curtis W., and Capaldo, Salvatore D. 1996 Blind Tests of Inter-analyst Correspondence and Accuracy in the Identification of Cut Marks, Percussion Marks, and Carnivore Tooth Marks on Bone Surfaces. Journal of Archaeological Sciences 23:493507.Google Scholar
Blumenschine, Robert J., and Selvaggio, Marie M. 1988 Percussion Marks on Bone Surfaces as a New Diagnostic of Hominid Behavior. Nature 333:763765.Google Scholar
Bronk Ramsey, Christopher 2009 Bayesian Analysis of Radiocarbon Dates. Radiocarbon 51:337360.Google Scholar
Bunn, Henry T. 1981 Archaeological Evidence for Meat-Eating by Plio-Pleistocene Hominids from Koobi Fora and Olduvai Gorge. Nature 291:574577.Google Scholar
Butler, B. Robert 1963 An Early Man Site at Big Camas Prairie, South-central Idaho. Tebiwa 6:2233.Google Scholar
Butler, B. Robert 1968 An Introduction to Archaeological Investigations in the Pioneer Basin Locality of Eastern Idaho. Tebiwa 11:130.Google Scholar
Butler, B. Robert 1978 A Guide to Understanding Idaho Archaeology: The Upper Snake and Salmon River Country. 3rd ed. Idaho Museum of Natural History, Pocatello.Google Scholar
Butler, B. Robert, Gildersleeve, Helen, and Sommers, John 1971 Wasden Site Bison: Sources of Morphological Variation. In Aboriginal Man and Environments on the Plateau of Northwest America, edited by Stryd, Arnoud H. and Smith, Rachel A., pp. 126152. University of Calgary Archaeological Association, Calgary.Google Scholar
Cannon, Michael D., and Meltzer, David J. 2004 Early Paleoindian Foraging: Examining the Faunal Evidence for Large Mammal Specialization and Regional Variability in Prey Choice. Quaternary Science Reviews 23:19551987.Google Scholar
Collard, Mark, Buchanan, Briggs, Hamilton, Marcus J., and O'Brien, Michael J. 2010 Spatiotemporal Dynamics of the Clovis Folsom Transition. Journal of Archaeological Science 37:25132519.Google Scholar
Culliford, Bryan J. 1964 Precipitin Sera in Forensic Problems. Nature 201:10931094.Google Scholar
Culliford, Bryan J. 1971 The Examination and Typing of Blood Stains in the Crime Laboratory. U.S. Government Printing Office, Washington, DC.Google Scholar
DeCarlo, Matthew M. 2017 Butchering Marks, Carnivores, and Roof Fall: A Taphonomic Analysis of the Owl Cave Mammoth Bone Assemblage. Unpublished Master's thesis, Department of Anthropology, California State University, Bakersfield.Google Scholar
Dominguez-Rodrigo, Manuel, de Juana, S., Galan, Ana B., and Rodriguez, M. 2009 A New Protocol to Differentiate Trampling Marks from Butchery Cut Marks. Journal of Archaeological Science 36:26432654.Google Scholar
Dorrill, Marion, and Whitehead, P. H. 1979 The Species Identification of Very Old Human Bloodstains. Forensic Science International 13:111116.CrossRefGoogle Scholar
Dort, Wakefield Jr. 1968 Paleoclimatic Implications of Soil Structures at the Wasden Site (Owl Cave). Tebiwa 11:1336.Google Scholar
Duke, Daron 2015 Haskett Spear Weaponry and Protein-residue Evidence for Proboscidean Hunting in the Great Salt Lake Desert, Utah. PaleoAmerica 1:109112.Google Scholar
Fisher, John W. Jr. 1995 Bone Surface Modification in Zooarchaeology. Journal of Archaeological Method and Theory 2:767.Google Scholar
Frison, George C. 1989 Experimental Use of Clovis Weaponry and Tools on African Elephants. American Antiquity 54:766784.Google Scholar
Frison, George C., and Todd, Lawrence C. 1986 The Colby Site. University of New Mexico Press, Albuquerque.Google Scholar
Gilbert, M. Thomas P., Jenkins, Dennis L., Göther-strom, Anders, Naveran, Nuria, Sanchez, Juan J., Hofreiter, Michael, Thomsen, Philip Francis, Binladen, Jonas, Higham, Thomas F. G., Yohe, Robert M. II, Parr, Robert, Cummings, Linda Scott, and Willerslev, Eske 2008 DNA from Pre-Clovis Human Coprolites from Oregon, North America. Science 10:1126.Google Scholar
Grayson, Donald K., and Meltzer, David J. 2002 Clovis Hunting and Large Mammal Extinction: A Critical Review of the Evidence. Journal of World Prehistory 16:313359.Google Scholar
Greenfield, Haskel J. 2006 Slicing Cut Marks on Animal Bones: Diagnostics for Identifying Stone Tool Type and Raw Material. Journal of Field Archaeology 31:147163.Google Scholar
Guenther, Marissa Anne 2014 The Owl Cave Mass Kill: Examining the Evidence for an Early Holocene Communal Bison Drive in Southeastern Idaho Using GIS. Unpublished Master's thesis, Department of Anthropology, California State University, Bakersfield.Google Scholar
Haynes, Gary 1980 Evidence of Carnivore Gnawing on Pleistocene and Recent Mammalian Bones. Paleobiology 6: 341351.Google Scholar
Haynes, Gary 1983 A Guide for Differentiating Mammalian Carnivore Taxa Responsible for Gnaw Damage to Herbivore Limb Bones. Paleobiology 9:165172.Google Scholar
Haynes, Gary 1991 Mammoths, Mastodonts, and Elephants: Biology, Behavior, and the Fossil Record. Cambridge University Press, New York.Google Scholar
Haynes, Gary 2016 Taphonomy of the Inglewood Mammoth (Mammuthus columbi) (Maryland, USA): Green-Bone Fracturing of Fossil Bones. Quaternary International. DOI: https://doi.org/10.1016/j.quaint.2016.02.034, accessed May 10, 2017.Google Scholar
Henrikson, Norman D., and Yohe, Robert M. II 2009 Protein Residue Analysis on Nine Folsom Points from Archaeological Site 10BV30. California State University, Bakersfield, Laboratory of Archaeological Science Report No. 219. Submitted to the Center for Archaeological Research, California State University, Bakersfield, California. Copies available from the Laboratory of Archaeological Science, California State University, Bakersfield.Google Scholar
Henrikson, L. Suzann 2002 Ponds, Rivers and Bison Freezers: Evaluating a Behavioral Ecological Model of Hunter Gatherer Mobility on Idaho's Snake River Plain. Unpublished Ph.D. dissertation, Department of Anthropology, University of Oregon, Eugene.Google Scholar
Henrikson, L. Suzann, and Long, Montana M. 2007 In Pursuit of Humans and Extinct Mammals in the Northern Great Basin: Results of Excavations at Kelvin's Cave. In Paleoindian or Paleoarchaic? Great Basin Human Ecology at the Pleistocene-Holocene Transition, edited by Kelly E. Graf and Schmitt, Dave N., pp. 4256. University of Utah Press, Salt Lake City.Google Scholar
Hogberg, Anders, Puseman, Kathryn, and Yost, Chad 2009 Integration of Use-Wear with Protein Residue Analysis—A Study of Tool Use and Function in the South Scandinavian Early Neolithic. Journal of Archaeological Science 36:17251737.Google Scholar
Karr, Landon P. 2012 The Analysis and Interpretation of Fragmented Mammoth Bone Assemblages: Experiments in Bone Fracture with Archaeological Applications. Ph.D. dissertation, Department of Archaeology, University of Exeter, Exeter.Google Scholar
Kooyman, Brian, Newman, Margaret E., and Ceri, Howard 1992 Verifying the Reliability of Blood Residue Analysis of Archaeological Tools. Journal of Archaeological Science 19:265269.Google Scholar
Kooyman, Brian, Newman, Margaret E., Cluney, Christine, Lobb, Murray, Tolman, Shayne, McNeil, Paul, and Hills, L. V. 2001 Identification of Horse Exploitation by Clovis Hunters Based on Protein Analysis. American Antiquity 66:686691.Google Scholar
Long, Montana M. 2007 A GIS-Based Test of an Ideal Free Distribution Model on Terminal Pleistocene and Early Holocene Human Occupations on Idaho's Snake River Plain. Unpublished Master's thesis, Department of Anthropology, University of Oregon, Eugene.Google Scholar
Miller, Susanne J. 1977 Original unpublished field notes from Owl Cave. Documents on file, Idaho Museum of Natural History, Accession 1642. Pocatello.Google Scholar
Miller, Susanne J. 1982 The Archaeology and Geology of an Extinct Megafauna/Fluted Point Association at Owl Cave, the Wasden Site, Idaho: A Preliminary Report. In Peopling of the New World, edited by Ericson, Jonathan, Taylor, R. E., and Berger, Rainer, pp. 8195. Anthropological Papers No. 23. Ballena Press, Los Altos, California.Google Scholar
Miller, Susanne J. 1983 Osteo-archaeology of the Mammoth-Bison Assemblage at Owl Cave, the Wasden Site, Idaho. In Carnivores, Human Scavengers, and Predators: A Question of Bone Technology, edited by Genevieve M. LeMoine and MacEachern, A. Scott, pp. 3953. Proceedings of the 15th Annual Conference, Archaeological Association, University of Calgary, Calgary.Google Scholar
Miller, Susanne J. 1989 Characteristics of Mammoth Bone Reduction at Owl Cave, the Wasden Site, Idaho. In Bone Modification, edited by Robson Bonnichsen and Sorg, Marcella H., pp. 381393. Institute for Quaternary Science, University of Maine, Orono.Google Scholar
Miller, Susanne J., and Dort, Wakefield Jr. 1978 Early Man at Owl Cave: Current Investigations at the Wasden Site, Eastern Snake River Plain, Idaho. In Early Man in America from a Circum-Pacific Perspective, edited by Alan Bryan, pp. 129139. Occasional Papers 1, Department of Anthropology, University of Calgary.Google Scholar
Newman, Margaret E. 1990 The Hidden Evidence from Hidden Cave, Nevada: The Application of Immunological Analysis to Artifacts. Unpublished Ph.D dissertation, Department of Anthropology, University of Toronto, Toronto.Google Scholar
Newman, Margaret E. 1996 The Use of Immunological Techniques in the Analysis of Archaeological Materials: A Response to Eisele; with Report of Studies at Head-Smashed-In Buffalo Jump. Antiquity 70:677682.Google Scholar
Newman, Margaret E., and Julig, Patrick J. 1989 The Identification of Protein Residues on Lithic Artifacts from a Stratified Boreal Forest Site. Canadian Journal of Archaeology 13:119132.Google Scholar
Newman, Margaret E., Yohe, Robert M. II, Ceri, Howard, and Sutton, Mark Q. 1993 Immunological Protein Residue Analysis of Non-Lithic Archaeological Materials. Journal of Archaeological Science 20:93100.Google Scholar
Parr, Robert 2006 Protein Residue Analysis of Human Coprolites and Artifacts from Paisley Five-Mile Caves (34LK3400), Oregon. Report on file, Laboratory of Archaeological Science (LAS-146), California State University, Bakersfield.Google Scholar
Plew, Mark G., and Pavesic, Max G. 1982 A Compendium of Radiocarbon Dates for Southern Idaho Archaeological Sites. Journal of California and Great Basin Anthropology 4:113122.Google Scholar
Potts, Richard, and Shipman, Pat 1981 Cutmarks Made by Stone Tools on Bones from Olduvai Gorge, Tanzania. Nature 291:577580.Google Scholar
Redmond, Brian G., McDonald, H. Gregory, Greenfield, Haskel J., and Burr, Matthew L. 2012 New Evidence for Late Pleistocene Human Exploitation of Jefferson's Ground Sloth from Northern Ohio, USA. World Archaeology 44:75101.Google Scholar
Seeman, Mark F., Nilsson, Nils E., Summers, Garry L., Morris, Larry L., Parans, Paul J., Dowd, Elaine, and Newman, Margaret E.. 2008 Evaluating Protein Residues on Gainey Phase Paleo- indian Stone Tools. Journal of Archaeological Science 35:27422750.Google Scholar
Shanks, Orin C., Bonnichsen, Robsin, Vella, Anthony T., and Ream, Walt 2001 Recovery of Protein and DNA Trapped in Stone Tool Microcracks. Journal of Archaeological Science 28:965972.Google Scholar
Shipman, Pat 1981 Application of Scanning Electron Microscopy to Taphonomic Problems. Annals of the New York Academy of Sciences 376:357386.Google Scholar
Shipman, Pat, Fisher, Daniel C., and Rose, Jennie J. 1984 Mastodon Butchery: Microscopic Evidence of Carcass Processing and Bone Tool Use. Paleobiology 10: 358365.Google Scholar
Shipman, Pat, and Rose, Jennie 1983 Early Hominid Hunting, Butchering, and Carcass-Processing Behaviors: Approaches to the Fossil Record. Journal of Anthropological Archaeology 2:5798.Google Scholar
Surovell, Todd A., Boyd, Joshua R., Haynes, C. Vance Jr., and Hodgins, Gregory W. L. 2016 On the Dating of the Folsom Complex and Its Correlation with the Younger Dryas, the End of Clovis, and Megafaunal Extinction. PaleoAmerica 2:8189.Google Scholar
Titmus, Gene L., and Woods, James C. 1991 Fluted Points from the Snake River Plain. In Clovis: Origins and Adaptations, edited by Bonnichsen, Robson and Turnmire, Karen L., pp. 119131. Center for the Study of the First Americans, Oregon State University, Corvallis.Google Scholar
Tuller, Hugh, and Saunders, Rebecca 2012 The Use of Crossover Immunoelectrophoresis to Detect Human Blood Protein in Soil from an Ambush Scene in Kosovo. Journal of Forensic Sciences 57:873879.Google Scholar
Yohe, Robert M. II, and Bamforth, Douglas 2013 Late Pleistocene Protein Residues from the Mahaffy Cache, Colorado. Journal of Archaeological Science 40 (5):23372343.Google Scholar
Yohe, Robert M., Newman, Margaret E., and Schneider, Joan S. 1991 Immunological Identification of Small-Mammal Proteins on Aboriginal Milling Equipment. American Antiquity 56:659666.Google Scholar
Yohe, Robert M. II, and Woods, James 2000 A Paleo-Indian Context for the State of Idaho. Special Publication of the Idaho State Historical Society, Boise.Google Scholar
Yost, Chad 2013 Protein Residue Analysis of a Haskett Projectile Point from Site 42TO5135, Great Salt Lake Desert, Utah. PaleoResearch Institute Technical Report 13–016. Prepared for Far Western Anthropological Research Group, Inc. Henderson, Nevada. Copies available from http://core.tdar.org/document/391581/protein-residue-analysis-of-a-haskett-projectile-point-from-site-42to5135-great-salt-lake-desert-utah.Google Scholar