Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T14:19:31.790Z Has data issue: false hasContentIssue false

Experimental and Archaeological Verification of an Index of Retouch for Hafted Bifaces

Published online by Cambridge University Press:  20 January 2017

William Andrefsky Jr.*
Affiliation:
Department of Anthropology, Washington State University, Pullman, WA 99164-4910 ([email protected])

Abstract

The relative amount of retouch on stone tools is central to many archaeological studies linking stone tool assemblages to broader issues of human social and economic land-use strategies. Unfortunately, most retouch measures deal with flake and blade tools and few (if any) have been developed for hafted bifaces and projectile points. This paper introduces a new index for measuring and comparing amount of retouch on hafted bifaces and projectile points that can be applied regardless of size or typological variance. The retouch index is assessed initially with an experimental data set of hafted bifaces that were dulled and resharpened on five occasions. The retouch index is then applied to a hafted biface assemblage made from tool stone that has been sourced by X-Ray Fluorescence (XRF). Results of both assessments show that the hafted biface retouch index (HRI) is effective for determining the amount of retouch and the degree to which the hafted bifaces have been curated.

Résumé

Résumé

La cantidad relativa de retoque en las herramientas de piedra es central para muchos estudios arqueológicos que ligan colecciones de herramientas de piedra a aplicaciones más amplias de estrategias sociales y económicas humanas en la utilización del suelo. Desafortunadamente la mayoría de medidas de retoque se enfocan en la escama y el filo, y pocas se han desarrollado para el mango de los bifaces y puntas del proyectil. Este trabajo introduce un nuevo índice útil para medir y comparar la cantidad de retoque en los mangos de los bifaces y en las puntas de proyectil que se puede aplicar a pesar del tamaño o variación tipológica. El índice de retoque se determina inicialmente con un conjunto experimental de datos controlados de los mangos de bifaces que se desgastaron y afilaron de nuevo en cinco ocasiones. El índice de retoque entonces es aplicado a una colección de bifaces de piedra cuya procedencia ha sido ubicada por XRF. Los resultados de ambas demostraciones muestran que el índice del mango de biface (HRI) es una medida eficaz para determinar la cantidad de retoque y el grado en el cual los mangos de los bifaces han sido conservados.

Type
Reports
Copyright
Copyright © The Society for American Archaeology 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Ahler, Stanley A. 1971 Projectile Point Form and Function at Rodger’s Shelter, Missouri. College of Arts and Science, University of Missouri-Columbia and the Missouri Archaeological Society, Columbia, Missouri.Google Scholar
Amick, Daniel S., and Mauldin, Raymond P. 1997 Effects of Raw Material on Flake Breakage Patterns. Lithic Technology 22:1832.Google Scholar
Andrefsky, William Jr. 1994 Raw Material Availability and the Organization of Technology. American Antiquity 59:2135.CrossRefGoogle Scholar
Andrefsky, William Jr. 1997 Thoughts on Stone Tool Shape and Inferred Function. Journal of Middle Atlantic Archaeology 13:12544.Google Scholar
Andrefsky, William Jr. 2005 Lithics: Macroscopic Approaches to Analysis, Second Edition. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Andrefsky, William Jr., Centola, Lisa, Cowan, Jason, and Wallace, Erin (editors) 2003 An Introduction to the Birch Creek Site: Six Seasons of Washington State University Archaeological Study. Center for Northwest Anthropology. Contributions in Cultural Resource Management. No. 69. Washington State University, Pullman, Washington.Google Scholar
Bamforth, Douglas B. 1986 Technological Efficiency and Tool Curation. American Antiquity 51:3850.Google Scholar
Barton, C. Michael 1988 Lithic Variability and Middle Paleolithic Behavior. BAR International Series 408. British Archaeological Reports, Oxford.Google Scholar
Bettinger, Robert L. 1991 Hunter-Gatherers: Archaeological and Evolutionary Theory. Plenum Press, New York.CrossRefGoogle Scholar
Bettinger, Robert L., and Baumhoff, Martin A. 1982 The Numic Spread: Great Basin Cultures in Competion. American Antiquity 47:485503.CrossRefGoogle Scholar
Binford, Lewis R. 1973 Interassemblage Variability: The Mousterian and the ‘Functional’ Argument. In The Explanation of Culture Change: Models in Prehistory, edited by C. Renfrew, pp. 227254. Duckworth, London.Google Scholar
Binford, Lewis R. 1979 Organization and Formation Processes: Looking at Curated Technologies. Journal of Anthropological Research 35:255273.Google Scholar
Binford, Lewis R. 1980 Willow Smoke and Dogs’ Tails: Hunter-Gatherer Settlement Systems and Archaeological Site Formation. American Antiquity 45:420.CrossRefGoogle Scholar
Blades, Brooke S. 2003 End Scraper Reduction and Hunter-Gatherer Mobility. American Antiquity 68:141156.CrossRefGoogle Scholar
Bleed, Peter 1986 The Optimal Design of Hunting Weapons: Maintainability or Reliability. American Antiquity 51:737747.Google Scholar
Bradbury, Andrew P., and Franklin, Jay D. 2000 Material Variability, Package Size and Mass Analysis. Lithic Technology 25:4258.Google Scholar
Callahan, Errett 1979 The Basics of Biface Knapping in the Eastern Fluted Point Tradition: A Manual for Flintknappers and Lithic Analysts. Archaeology of Eastern North America 7(1):118.Google Scholar
Carr, Philip J. 1994 Technological Organization and Prehistoric Hunter-Gatherer Mobility: Examination of the Hayes Site. In The Organization of North American Prehistoric Chipped Stone Tool Technologies, edited by P. J. Carr, pp. 3544. Archaeological Series 7, International Monographs in Prehistory, Ann Arbor.Google Scholar
Centola, Lisa 2004 Deconstructing Lithic Technology: A Study from the Birch Creek Site (35ML181), Southeastern Oregon. Unpublished MA thesis, Department of Anthropology, Washington State University, Pullman.Google Scholar
Clarkson, Chris 2002 An Index of Invasiveness for the Measurement of Unifacial and Bifacial Retouch: A Theoretical, Experimental and Archaeological Verification. Journal of Archaeological Science 29:6575.CrossRefGoogle Scholar
Couch, Jeffery S., Stropes, Tracy A., and Schroth, Adella B. 1999 The Effect of Projectile Point Size on Atlatl Dart Efficiency. Lithic Technology 24:2737.CrossRefGoogle Scholar
Davis, Z. J., and Shea, J.J. 1998 Quanitfying Lithic Curation: An Experimental Test of Dibble and Pelcin’s Original Flake-tool Mass Predictor. Journal of Archaeological Science 25:603610.Google Scholar
Dibble, Harold L. 1997 Platform Variability and Flake Morphology A Comparison of Experimental and Archeological Data and Implications for Interpreting Prehistoric Lithic Technological Strategies. Lithic Technology 22:150170.CrossRefGoogle Scholar
Dibble, Harold L., and Pelcin, Andrew 1995 The Effect of Hammer Mass and Velocity on Flake Mass. Journal of Archaeological Science 22:429239.Google Scholar
Eren, Metin I., Dominguez-Rodrigo, Manual, Kuhn, Steven L., Adler, Daniel S., Le, Ian, Bar-Yosef, Ofer 2005 Defining and Measuring Reduction in Unifacial Stone Tools. Journal of Archaeological Science 32:11901206.Google Scholar
Flenniken, J. Jeffrey, and Raymond, Anan W. 1986 Morphological Projectile Point Typology: Replication Experimentation and Technological Analysis. American Antiquity 51:603614.Google Scholar
Flenniken, J. Jeffrey, and Wilke, Philip J. 1989 Typology, Technology, and Chronology of Great Basin Dart Points. American Anthropologist 91:149158.Google Scholar
Goodyear, Albert C. 1974 The Brand Site: A Techno-Functional Study of a Dalton Site in Northeast Arkansas. Arkansas Archaeological Survey Publications on Archaeology, Research Series 7.Google Scholar
Greiser, Sally T. 1977 Micro-Analysis of Wear Patterns on Projectile Points and Knives from the Jurgens Site, Kersey, Colorado. Plains Anthropologist 22:107116.Google Scholar
Hiscock, Peter, and Attenbrow, Val 2003 Early Australian Implement Variation: A Reduction Model. Journal of Archaeological Science 30:239249.Google Scholar
Hiscock, Peter, and Clarkson, Chris 2005 Experimental Evaluation of Kuhn’s Geometric Index of Reduction and the Flat-Flake Problem. Journal of Archaeological Science 32:10151022.CrossRefGoogle Scholar
Hoffman, C. Marshall 1985 Projectile Point Maintenance and Typology: Assessment with Factor Analysis and Canonical Correlation. In For Concordance in Archaeological Analysis: Bridging Data Structure, Quantitative Technique, and Theory, edited by C. Carr, pp. 566612, Westport Press, Kansas City.Google Scholar
Jones, George T., Beck, Charlotte, Jones, Eric E., and Hughes, Richard E. 2003 Lithic Source Use and Paleoarchaic Foraging Territories in the Great Basin. American Antiquity 68:538.CrossRefGoogle Scholar
Kay, Marvin 1996 Microwear Analysis of Some Clovis and Experimental Chipped Stone Tools. In Stone Tools: Theoretical Insights into Human Prehistory, edited by George Odell, pp. 315344. Plenum Press, New York.CrossRefGoogle Scholar
Kelly, Robert L. 1988 The Three Sides of a Biface. American Antiquity 53:717734.Google Scholar
Kelly, Robert L. 1992 Mobility/Sedentism: Concepts, Archaeological Measures, and Effects. Annual Review of Anthropology 21:4366.Google Scholar
Kuhn, Steven L. 1990 A Geometric Index of Reduction for Unifacial Stone Tools. Journal of Archaeological Science 17:585593.Google Scholar
Kuhn, Steven L. 1994 Formal Approach to the Design and Assembly of Mobile Toolkits. American Antiquity 59:426442.Google Scholar
Lyons, William H., Thomas, Scott P., and Skinner, Craig 2001 Changing Obsidian Sources at the Lost Dune and McCoy Creek Sites, Blitzen Valley, Southeastern Oregon. Journal of California and Great Basin Anthropology 23:273296.Google Scholar
Madsen, David B. 1994 Mesa Verde and Sleeping Ute Mountain: The Geographical and Chronological Dimensions of the Numic Expansion. In Across the West: Human Population Movement and the Expansion of the Numa, edited by D.B. Madsen and D. Rhode, pp. 2434, University of Utah Press, Salt Lake City.Google Scholar
Morrow, Juliet 1997 End Scraper Morphology and Use-Life: An Approach for Studying Paleoindian Lithic Technology and Mobility. Lithic Technology 22:7085.CrossRefGoogle Scholar
Nance, Jack D. 1971 Functional Interpretations from Microscopic Analysis. American Antiquity 36:361366.Google Scholar
Nelson, Margaret C. 1991 The Study of Technological Organization. In Archaeological Method and Theory, Vol. 3, edited by M.B. Schiffer, pp. 57100. University of Arizona Press, Tucson.Google Scholar
Nowell, April, Park, Kyoungju, Mutaxas, Dimitris, Park, Jinah 2003 Deformation Modeling: A Methodology for the Analysis of Handaxe Morphology and Variability. In Multiple Approaches to the Study of Bifacial Technologies, edited by Marie Soressi and Harold L. Dibble, pp. 193208, University of Pennsylvania Museum of Archaeology and Anthropology, Philadelphia.Google Scholar
Odell, George H., and Cowan, Frank 1986 Experiments with Spears and Arrows on Animal Targets. Journal of Field Archaeology 13(2):195212.Google Scholar
Rolland, Nicolas, and Dibble, Harold L. 1990 A New Synthesis of Middle Paleolithic Variability. American Antiquity 55:480499.Google Scholar
Shott, Michael J. 1989 Technological Organization in Great Lakes Paleoindian Assemblages. In Eastern Paleoindian Lithic Resource Use, edited by C. Ellis and J. Lothrop, pp. 221237. Westview Press, Boulder.Google Scholar
Shott, Michael J. 1996 An Exegesis of the Curation Concept. Journal of Anthropological Research 52:259280.Google Scholar
Shott, Michael J., Bradbury, Andrew P., Carr, Philip J., and Odell, George H. 2000 Flake Size from Platform Attributes: Predictive and Empirical Approaches. Journal of Archaeological Science 27:877894.CrossRefGoogle Scholar
Shott, Michael J., and Sillitoe, Paul 2005 Use Life and Curation in New Guinea Experimental Used Flakes. Journal of Archaeological Science 32:653663.Google Scholar
Truncer, James J. 1990 Perkiomen Points: A Study in Variability. In Experiments and Observations on the Terminal Archaic of the Middle Atlantic Region, edited R. W. Moeller, pp. 162. Archaeological Services, Bethlehem, Connecticut.Google Scholar
Wallace, Erin 2004 Obsidian Projectile Points and Human Mobility Around the Birch Creek Site (35ML181), Southeastern Oregon. Unpublished M. A. thesis, Department of Anthropology, Washington State University, Pullman.Google Scholar
Weedman, Kathryn J. 2002 On the Spur of the Moment: Effects of Age and Experience on Hafted Stone Scraper Morphology. American Antiquity 67:731744.Google Scholar
Whittaker, John C. 1994 Flintknapping: Making and Understanding Stone Tools. University of Texas Press, Austin.Google Scholar
Wilmsen, Edwin S. 1970 Lithic Analysis and Cultural Inference: A Paleo-Indian Case. Anthropological Papers of the University of Arizona No. 16, Tucson.Google Scholar