Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T05:55:21.514Z Has data issue: false hasContentIssue false

A Core Reduction Experiment Finds No Effect of Original Stone Size and Reduction Intensity on Flake Debris Size Distribution

Published online by Cambridge University Press:  20 January 2017

Sam C. Lin*
Affiliation:
Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
Cornel M. Pop
Affiliation:
Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
Harold L. Dibble
Affiliation:
Department of Anthropology, University of Pennsylvania, Philadelphia, PA 19104
Will Archer
Affiliation:
Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
Dawit Desta
Affiliation:
Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
Marcel Weiss
Affiliation:
Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
Shannon P. McPherron
Affiliation:
Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
*
([email protected], corresponding author)

Abstract

Studies have long noted the influence of stone package size and reduction intensity on lithic assemblage composition, particularly in the form of flake size distributions. However, it remains difficult to distinguish objectively the effect of either factor in archaeological contexts without controlling for the variation in one of the two variables. Here we report on an experimental study designed to test the null hypotheses that original stone size and reduction intensity have no impact on the size distribution of lithic flake debris produced during core reduction. Results indicate statistically significant influence from original stone size but not reduction intensity, although the effects from the former are low enough to be considered trivial. In reviewing a sequence of archaeological assemblages from a Middle Paleolithic site, all exhibit an excess of smallsized materials in comparison to the experimental data. When exceptionally high frequencies of the smaller size classes occur, taphonomic processes are clearly responsible.

La influencia del tamaño y de la intensidad de reducción de los núcleos sobre la composición de colecciones líticas, especialmente con respecto a la distribución del tamaño de las lascas, ha sido señalada y discutida en varios estudios a lo largo del tiempo. Sin embargo, distinguir objetivamente entre los efectos de uno de estos factores en contextos arqueológicos, sin controlar la variación entre una de las dos variables, sigue siendo difícil. En este trabajo presentamos los resultados de un estudio experimental diseñado para evaluar dos hipótesis nulas que postulan que el tamaño original y la intensidad de reducción de los nódulos líticos no afectan la distribución del tamaño de los productos de la talla. Nuestros resultados indican una influencia significativa del tamaño original de los nódulos, aunque con efectos mínimos, pero no de la intensidad con la que estos son reducidos. Una evaluación de colecciones líticas de un sitio del Paleolítico Medio revela que todas ellas exhiben un exceso de materiales de pequeñas dimensiones en comparación con nuestros datos experimentales. En casos extremos, esto refleja claramente la influencia de procesos tafonómicos.

Type
Reports
Copyright
Copyright © Society for American Archaeology 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Ahler, Stanley A 1989 Mass Analysis of Flaking Debris: Studying the Forest rather than the Tree. Archaeological Papers of the American Anthropological Association 1:85–118.Google Scholar
Aldeias, Vera, Goldberg, Paul, Sandgathe, Dennis, Francesco Berna, , Dibble, Harold L., McPherron, Shannon P., Turq, Alain, and Rezek, Zeljko 2012 Evidence for Neanderthal Use of Fire at Roc de Marsal (France). Journal of Archaeological Science 39: 2414–2423.Google Scholar
Amick, Daniel S., and Mauldin, Raymond P. (editors) 1989 Experiments in Lithic Technology. British Archaeological Reports, Oxford.Google Scholar
Amick, Daniel S., Mauldin, Raymond P., and Tomka, Steven A. 1988 An Evaluation of Debitage Produced by Experimental Bifacial Core Reduction of a Georgetown Chert Nodule. Lithic Technology 17:26–36.Google Scholar
Jr.Andrefsky, William., 2007 The Application and Misapplication of Mass Analysis in Lithic Debitage Studies. Journal of Archaeological Science 34:392–402.Google Scholar
Jr.Andrefsky, William. 2005 Lithics: Macroscopic Approaches to Analysis. Cambridge University Press, Cambridge.Google Scholar
Barr, Dale J., Levy, Roger, Scheepers, Christoph, and Tily, Harry J. 2013 Random Effects Structure for Confirmatory Hypothesis Testing: Keep it Maximal. Journal of Memory and Lan guage 68:255–278.Google Scholar
Bates, Douglas, Maechler, Martin, Bolker, Ben, and Walker, Steve 2015 Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67:1–48.Google Scholar
Bertran, Pascal, C., Cédric Beauval, Boulogne, Stéphane, Brenet, Michel, Costamagno, Sandrine, Feuillet, Thierry, Laroulandie, Véronique, Lenoble, Arnaud, Malau-rent, Phillippe, and Mallye, Jean-Baptiste 2015 Experimental Archaeology in a Mid-latitude Periglacial Context: Insight into Site Formation and Taphonomic Processes. Journal of Archaeological Science 57:283–301.Google Scholar
Bertran, Pascal, Lenoble, Arnaud, Todisco, Dominique, Desrosiers, Pierre M., and Sørensen, Mikkel 2012 Particle Size Distribution of Lithic Assemblages and Taphonomy of Palaeolithic Sites. Journal of Archaeological Science 39:3148–3166.Google Scholar
Bradbury, Andrew P., and Carr, Philip J. 2009 Hits and Misses when Throwing Stones at Mass Analysis. Journal of Archaeological Science 36:2788–2796.Google Scholar
Bradbury, Andrew P., and Carr, Philip J. 2004 Combining Aggregate and Individual Methods of Flake Debris Analysis: Aggregate Trend Analysis. North American Archaeologist 25:65–90.Google Scholar
Bradbury, Andrew P., and Carr, Philip J. 1999 Examining Stage and Continuum Models of Flake Debris Analysis: An Experimental Approach. Journal of Archaeological Science 26:105–116.Google Scholar
Bradbury, Andrew P., and Franklin, Jay D. 2000 Material Variability, Package Size and Mass Analysis. Lithic Technology 25:42–58.Google Scholar
Braun, David R. 2006 Ecology of Oldowan Technology: Koobi Fora and Kanjera South. Unpublished Ph.D. dissertation, Department of Anthropology, Rutgers University, New Brunswick.Google Scholar
Brown, Clifford T. 2001 The Fractal Dimensions of Lithic Reduction. Journal of Archaeological Science 28:619–631.Google Scholar
Cadieux, Nicolas 2013 Size Matters: Measuring Debitage Area and Getting It Right with a Digital Scanner. Lithic Technology 38:46–70.Google Scholar
Carr, Philip J., and Bradbury, Andrew P. 2010 Flake Debris and Flintknapping Experimentation. In Designing Experimental Research in Archaeology: Examining Technology through Production and Use, edited by Ferguson, Jeffrey R., pp. 71–91. University Press of Colorado, Boulder.Google Scholar
Carr, Philip J., and Bradbury, Andrew P. 2004 Exploring Mass Analysis, Screens, and Attributes. In Aggregate Analyses in Lithic Studies, edited by Hall, Christopher T. and Larson, Mary Lou, pp. 21–44 University of Utah Press, Salt Lake City.Google Scholar
Clarkson, Chris 2002 An Index of Invasiveness for the Measurement of Unifacial and Bifacial Retouch: A Theoretical, Experimental and Archaeological Verification. Journal of Archaeological Science 29:65–75.Google Scholar
Debénath, Andre, and Dibble, Harold L. 1994 Handbook of Paleolithic Typology, Vol. I: The Lower and Middle Paleolithic of Europe. University Museum Press, Philadelphia.Google Scholar
Dibble, Harold L. 1995a An Assessment of the Integrity of the Archaeological Assemblages. In The Middle Paleolithic Site of Combe-Capelle Bas (France), edited by Dibble, Harold L. and Lenior, Michel, pp. 245–257 Museum of Archaeology and Anthropology, University of Pennsylvania Press, Philadelphia.Google Scholar
Dibble, Harold L. 1995b Introduction to Site Formation. In The Middle Paleolithic Site of Combe-Capelle Bas (France), edited by Dibble, Harold L. and Lenoir, Michel, pp. 175–178 University Museum Press, Museum of Archaeology and Anthropology, University of Pennsylvania Press.Google Scholar
Dibble, Harold L., Berna, Francesco, Goldberg, Paul, McPherron, Shannon P., Mentzer, Susan, Niven, Laura, Richter, Daniel, Sandgathe, Dennis, Théry-Parisot, Isabelle, and Turq, Alain 2009 A Preliminary Report on Pech de l’Aze IV, Layer 8 (Middle Paleolithic, France). PaleoAnthropology 2009:182–219.Google Scholar
Dibble, Harold L., and McPherron, Shannon P. 2006 The Missing Mousterian. Current Anthropology 47:777–803.Google Scholar
Dibble, Harold L., McPherron, Shannon P., Goldberg, Paul, and Turq, Alain 2004 Pech de l’Azé IV (Carsac, Dordogne): Rapport d’opération pour les années 2000–2003. Submitted to the Department of Antiquities. Copies available from the Service Régional de l’Archéologie, Bordeaux.Google Scholar
Dibble, Harold L., Schurmans, Utsav A., Iovita, Radu P., and McLaughlin, Michael V. 2005 The Measurement and Interpretation of Cortex in Lithic Assemblages. American Antiquity 70:545–560.Google Scholar
Ditchfield, Kane 2015 An Experimental Approach to Distinguishing Different Stone Artefact Transport Patterns from Debitage Assemblages. Journal of Archaeological Science 65:44–56.Google Scholar
Douglass, Matthew J. 2010 The Archaeological Potential of Informal Lithic Technologies: A Case Study of Assemblage Variability in Western New South Wales, Australia. Ph.D dissertation, Department of Anthropology, University of Auckland.Google Scholar
Douglass, Matthew J., Holdaway, Simon J., Fanning, Patricia C., and Shiner, Justin I. 2008 An Assessment and Archaeological Application of Cortex Measurement in Lithic Assemblages. American Antiquity 73:513–526.Google Scholar
Douglass, Matthew J., Holdaway, Simon J., Shiner, Justin, and Fanning, Patricia C. 2016 Quartz and Silcrete Raw Material Use and Selection in Late Holocene Assemblages from Semi-arid Australia. Quaternary International, in press.Google Scholar
Douglass, Matthew J., and Wandsnider, LuAnn 2012 Fragmentation Resistant Measures of Chipped Stone Abundance and Size: Results of an Experimental Investigation of the Impact of Cattle Trampling on Surface Chipped Stone Scatters. Plains Anthropologist 57:353–365.Google Scholar
Faraway, Julian J. 2006 Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models. Taylor & Francis Group, Boca Raton.Google Scholar
Fladmark, Knut R. 1982 Microdebitage Analysis: Initial Considerations. Journal of Archaeological Science 9:205–220.Google Scholar
Fox, John, and Weisberg, Sanford 2011 An R Companion to Applied Regression, 2nd ed. SAGE Publications, Thousand Oaks.Google Scholar
Goldberg, Paul., Dibble, Harold L., Berna, Francesco, Sandgathe, Dennis, McPherron, Shannon P., and Turq, Alain 2012 New Evidence on Neandertal Use of Fire: Examples from Roc de Marsal and Pech de l’Azé IV. Quaternary International 247:325–340.Google Scholar
Hall, Christopher T., and Larson, Mary Lou (editors) 2004 Aggregate Analysis in Chipped Stone. University of Utah Press, Salt Lake City.Google Scholar
Hayden, Brian, and Hutchings, W. Karl 1989 Whither the Billet Flake. In Experiments in Lithic Technology, edited by Amick, Daniel S. and Mauldin, Raymond P., pp. 235–257 British Archaeological Reports, Oxford.Google Scholar
Hiscock, Peter 2002 Quantifying the Size of Artefact Assemblages. Journal of Archaeological Science 29:251–258.Google Scholar
Hiscock, Peter, and Clarkson, Chris 2005 Experimental Evaluation of Kuhn’s Geometric Index of Reduction and the Flat-Flake Problem. Journal of Ar chaeological Science 32:1015–1022.Google Scholar
Holdaway, Simon J., and Douglass, Matthew J. 2015 Use beyond Manufacture: Non-Flint Stone Artifacts from Fowlers Gap, Australia. Lithic Technology 40:94–111.Google Scholar
Holdaway, Simon J., and Wandsnider, LuAnn 2008 Time in Archaeology: An Introduction. In Time in Archaeology: Time Perspectivism Revisited, edited by Holdaway, Simon J. and Wandsnider, LuAnn, pp. 1–12 University of Utah Press, Salt Lake City.Google Scholar
Kirk, Roger E. 2009 Experimental Design. In The SAGE Handbook of Quantitative Methods in Psychology, edited by Millsap, Roger E. and Maydeu-Olivares, Alberto, pp. 23–45 SAGE Publications, Thousand Oaks.Google Scholar
Kluskens, Stephen 1995 Archaeological Taphonomy of Combe-Capelle Bas from Artifact Orientation and density Analysis. In The Middle Paleolithic Site of Combe-Capelle Bas (France), edited by Dibble, Harold L. and Lenoir, Michel, pp. 199–243 University Museum Press, Philadelphia.Google Scholar
Lenoble, Arnaud, Bertran, Pascal, and Lacrampe, François 2008 Solifluction-Induced Modifications of Archaeological Levels: Simulation Based on Experimental Data from a Modern Periglacial Slope and Application to French Palaeolithic Sites. Journal of Archaeological Science 35:99–110.Google Scholar
Lin, Sam C., Mcpherron, Shannon P., and Dibble, Harold L. 2015 Establishing Statistical Confidence in Cortex Ratios within and among Lithic Assemblages: A Case Study of the Middle Paleolithic of Southwestern France. Journal of Archaeological Science 59:89–109.Google Scholar
Lin, Sam C., Rezek, Zeljko, Braun, David R., and Dibble, Harold L. 2013 On the Utility and Economization of Unretouched Flakes: The Effects of Exterior Platform Angle and Platform Depth. American Antiquity 78:724–746.Google Scholar
McBrearty, Sally, Bishop, Laura, Plummer, Thomas, Dewar, Robert, and Conard, Nicholas 1998 Tools Underfoot: Human Trampling as an Agent of Lithic Artifact Edge Modification. American Antiquity 63:108–129.Google Scholar
McPherron, Shannon J. P. 2005 Artifact Orientations and Site Formation Processes from Total Station Proveniences. Journal of Archaeological Science 32:1003–1014.Google Scholar
McPherron, Shannon P., Braun, David R., Dogandûic, Tamara, Archer, Will, Desta, Dawit, and Lin, Sam C. 2014 An Experimental Assessment of the Influences on Edge Damage to Lithic Artifacts: A Consideration of Edge Angle, Substrate Grain Size, Raw Material Properties, and Exposed Face. Journal of Archaeological Science 49:70–82.Google Scholar
Magnani, Matthew, Rezek, Zeljko, Lin, Sam C., Chan, Annie, and Dibble, Harold L. 2014 Flake Variation in Relation to the Application of Force. Journal of Archaeological Science 46:37–49.Google Scholar
Magne, Martin 1985 Lithics and Livelihood: Stone Tool Technologies of Central and Southern Interior B.C. Archaeology Survey of Canada, Mercury Series No. 133, Ottawa.Google Scholar
Magne, Martin, and Pokotylo, David 1981 A Pilot Study in Bifacial Lithic Reduction Sequences. Lithic Technology 10:34–47.Google Scholar
Nash, David T., and Petraglia, Michael D. (editors) 1987 Natural Formation Processes and the Archaeological Record. British Archaeological Reports, Oxford.Google Scholar
Premo, Luke S. 2014 Cultural Transmission and Diversity in Time-Averaged Assemblages. Current Anthropology 55:105–114.Google Scholar
R Core Team 2015 R: A Language and Environment for Statistical Com puting. R Foundation for Statistical Computing, Vienna, Austria. Electronic document, https://www.R-project.org/, accessed February 22, 2016.Google Scholar
Sandgathe, Dennis 2004 Alternative Interpretation of the Levallois Reduction Technique. Lithic Technology 29:147–159.Google Scholar
Schick, Kathy D. 1986 Stone Age Sites in the Making: Experiments in the Formation and Transformation of Archaeological Occurrences. British Archaeological Reports, Oxford.Google Scholar
Shott, Michael J. 1994 Size and Form in the Analysis of Flake Debris: Review and Recent Approaches. Journal of Archaeological Method and Theory 1:69–110.Google Scholar
Stahle, David W., and Dunn, James E. 1982 An Analysis and Application of the Size Distribution of Waste Flakes from the Manufacture of Bifacial Stone Tools. World Archaeology 14:84–97 Google Scholar
Stahle, David W., and Dunn, James E. 1984 Experimental Analysis of the Size Distribution of Waste Flakes from Biface Reduction. Arkansas Archaeological Survey, Fayetteville.Google Scholar
Stern, Nicola 1994 The Implications of Time-Averaging for Constructing the Land-Use Patterns of Early Tool-Using Hominids. Journal of Human Evolution 27:89–105.Google Scholar
Straus, Lawrence G. 1980 The Role of Raw Materials in Lithic Assemblage Variability. Lithic Technology 9:68–72.Google Scholar
Turq, Alain, Dibble, Harold L., Faivre, Jean-Philippe, Goldberg, Paul, McPherron, Shannon P., and Sandgathe, Dennis 2008 Le Moustérien du Périgord Noir: quoi de neuf? In Les sociétés Paléolithiques d’un grand sud-ouest: Nouveaux gisements, nouvelles méthodes, nouveaux résultats, edited by Jaubert, Jacques, Bordes, Jean-Guillaume, and Ortega, Iluminada, pp. 83–94 Bulletin de la Société Préhistorique Française, Paris.Google Scholar
Turq, Alain, Dibble, Harold L., Goldberg, Paul, McPherron, Shannon P., Sandgathe, Dennis, Jones, Heather, Maddison, Kerry, Maureille, Bruno, Mentzer, Susan, Rink, Jack, and Steenhuyse, Alex 2011 Les fouilles récentes du Pech de l’Azé IV (Dordogne). Gallia Préhistoire 53:1–58.Google Scholar
Venables, William N., and Ripley, Brain D. 2002 Modern Applied Statistics with S, 4th ed. Springer, New York.Google Scholar
Williams, Justin P., and Jr.Andrefsky, William 2011 Debitage Variability among Multiple Flint Knappers. Journal of Archaeological Science 38:865–872.Google Scholar
Supplementary material: PDF

Lin et al. Supplementary Material

Supplementary Material

Download Lin et al. Supplementary Material(PDF)
PDF 174.5 KB
Supplementary material: PDF

Lin et al. Supplementary Material

Figure S1

Download Lin et al. Supplementary Material(PDF)
PDF 124 KB
Supplementary material: PDF

Lin et al. Supplementary Material

Figure S2

Download Lin et al. Supplementary Material(PDF)
PDF 121.5 KB