Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T13:29:54.607Z Has data issue: false hasContentIssue false

The Construction and Configuration of Anasazi Pebble-Mulch Gardens in the Northern Rio Grande

Published online by Cambridge University Press:  20 January 2017

Dale R. Lightfoot
Affiliation:
Department of Geography, Oklahoma State University, Stillwater, OK 74078
Frank W. Eddy
Affiliation:
Department of Anthropology, University of Colorado, Boulder, CO 80309

Abstract

Rio Grande Anasazi in the fourteenth and fifteenth centuries A.D. mulched hundreds of garden-sized plots with pebbles to increase soil moisture, reduce erosion, extend the growing season, and increase crop yields. This paper reports on the construction and configuration of pebble-mulch gardens in New Mexico, focusing particularly on those in the Galisteo Basin. Surfaces adjacent to these gardens were scraped and pits were excavated to collect gravel, which was placed over garden surfaces in layers 5 to 11 cm thick. Gardens averaged 15 x 23 m in size, although both size and shape were highly variable, and they collectively covered an area of 41,000 m2 Although this unique agricultural strategy has been shown to be effective, construction was limited to sites with natural gravel deposits, pebbled surfaces inhibited the recycling of crop wastes, and such gardens never became as widely used as more traditional field forms.

Resumen

Resumen

Durante los siglos catorce y quince de nuestra era, agricultores Anasazi del Río Grande cubrieron cientos de huertas con sedimentos pedregosos para incrementar la humedad del suelo, reducir la erosión, extender la temporada de crecimiento, e incrementar la cosecha. Este artículo reporta la construcción y configuración de las huertas pedregosas en Nuevo México, enfocando particularmente las huertas de la Cuenca Galisteo. Las superficies adyacentes a estas huertas fueron raspadas y se excavaron huecos para recolectar los sedimentos pedregosos que se pusieron sobre la superficie de la huerta, en capas de 5 a 11 cm de espesor. Las huertas promediaron entre 15 y 23 m de tamaño, aunque tanto su tamaño como su forma fueron altamente variables; en total, estas huertas cubrieron un área de 41.000 m2. Aunque esta estrategia agricola única demostró ser efectiva, la construcción se limitó a sitios con depósitos pedregosos naturales. Además, las superficies pedregosas inhibieron el reciclado de desechos de cosecha, por lo cual estas huertas nunca se utilizaron tan ampliamente como aquéllas de forma más tradicional.

Type
Reports
Copyright
Copyright © The Society for American Archaeology 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Alderfer, R. B., and Merkle, F. G. 1943 The Comparative Effects of Surface Application versus Incorporation of Various Mulching Materials on Structure, Permeability, Runoff, and Other Soil Properties. Soil Science Society of America Proceedings 8 : 7986.CrossRefGoogle Scholar
Anschuetz, K. F., and Maxwell, T. D. 1986 The Multidisciplinary Investigation of Prehistoric Puebloan Gardens in the Lower Rio Chama Valley, New Mexico. Paper presented at the 9th Annual Ethnobiology Conference, Society of Ethnobiology, Albuquerque.Google Scholar
Bleak, A. T., and Keller, W. 1974 Crested Wheatgrass Yields as Influenced by Water Conservation Practices. Agronomy Journal 66 : 326328.CrossRefGoogle Scholar
Buge, D. E. 1981 Prehistoric Subsistence Strategies in the Chama Region, Northern New Mexico. Paper presented at the 46th Annual Meeting of the Society of American Archaeology, San Diego.Google Scholar
Buge, D. E. 1984 Prehistoric Subsistence Strategies in the Ojo Caliente Valley, New Mexico. In Prehistoric Agricultural Strategies in the Southwest, edited by Fish, S. K. and Fish, P. R., pp. 2734. Anthropological Research Paper No. 33, Arizona State University, Tempe.Google Scholar
Chang, Y. 1968 Climate and Agriculture : An Ecological Survey. Aldine Press, Chicago.Google Scholar
Clary, K. H. 1987 Pollen Evidence for the Agricultural Utilization of Late Classic Period (A. D. 1350-1500) Puebloan Gravel Mulch Terrace Gardens, the Rio Chama, in the Vicinity of Mendanales, New Mexico. Castetter Laboratory for Ethnobotanical Studies Technical Series Report No. 198. University of New Mexico, Albuquerque.Google Scholar
Cordell, L. S. 1984 Prehistory of the Southwest. Academic Press, New York City.Google Scholar
Corey, A. T., and Kemper, W. D. 1968 Conservation of Soil Water by Gravel Mulches. Colorado State University Hydrology Papers No. 30. Colorado State University, Ft. Collins.Google Scholar
Ellis, F. H. 1970 Irrigation and Water Works in the Rio Grande. Paper presented at the 43rd Annual Pecos Conference, Santa Fe.Google Scholar
Fairbourn, M. L. 1970 Gravel Mulches Improve Dryland Tomato Yields. Colorado Rancher and Farmer 24(3) : 6465.Google Scholar
Fairbourn, M. L. 1973 Effect of Gravel Mulch on Crop Yields. Agronomy Journal 65 : 925928.Google Scholar
Fiero, K. 1978 Prehistoric Garden Plots Along the Lower Rio Chama Valley : Archaeological Investigations at Sites LA 11830, LA 11831, and LA 11832, Rio Arriba County, New Mexico. Laboratory of Anthropology Note Hie. Museum of New Mexico, Santa Fe.Google Scholar
Gish, J. W. 1980 Pollen Results from Three Sites in Rio Arriba County, New Mexico. In Archaeological Investigations at a Pueblo Agricultural Site, and Archaic and Puebloan Encampments on the Rio Ojo Caliente, Rio Arriba County, New Mexico, edited by Lang, R. W., pp. 264277. Contract Archaeology Division Report No. 007. School of American Research, Santa Fe.Google Scholar
Gish, J. W. 1984 Pollen Results from a Prehistoric Pueblo Garden Plot at Ojo Caliente 7, Rio Arriba County, New Mexico. Manuscript on file, Quaternary Palynology Research, Littleton, Colorado.Google Scholar
Hakimi, A. H., and Kachru, R. P. 1978 Silage Corn Responses to Different Mulch Tillage Treatments under Arid and Semiarid Climatic Conditions. Journal of Agronomy and Crop Science 147 : 1523.Google Scholar
Lamb, J. Jr., , and Chapman, J. E. 1943 Effect of Surface Stones on Erosion, Evaporation, Soil Temperature, and Soil Moisture. Agronomy Journal 35 : 567578.Google Scholar
Lang, R. W. 1979 An Archaeological Survey Near the Confluence of the Chamaand Ojo Caliente Rivers, Rio Arriba County, New Mexico. Contract Archaeology Division Report No. 065. School of American Research, Santa Fe.Google Scholar
Lang, R. W. 1980 Archaeological Investigations at a Pueblo Agricultural Site, and Archaic and Puebloan Encampments on the Rio Ojo Caliente, Rio Arriba County, New Mexico. Contract Archaeology Division Report No. 007. School of American Research, Santa Fe.Google Scholar
Lang, R. W. 1981 A Prehistoric Pueblo Garden Plot on the Rio Ojo Caliente, Rio Arriba County, New Mexico : Ojo Caliente Site 7, Features 1-2. Contract Archaeology Division Report No. 065. School of American Research, Santa Fe.Google Scholar
Lightfoot, D. R. 1993a The Cultural Ecology of Puebloan Pebble Mulch. Human Ecology 21 : 115143.Google Scholar
Lightfoot, D. R. 1993b The Landscape Context of Anasazi Pebble-Mulched Fields in the Galisteo Basin, Northern New Mexico. Geoarchaeology 8 : 349370.Google Scholar
Lightfoot, D. R. 1994 Morphology and Ecology of Lithic Mulch Agriculture. Geographical Review 84 : 172185.Google Scholar
Lightfoot, D. R., and Eddy, F. W. 1994 The Agricultural Utility of Lithic-Mulch Gardens : Past and Present. Geojournal 34 : 42537.Google Scholar
Lueben, R. A. 1953 Leaf Water Site. In Salvage Archaeology in the Chama Valley, New Mexico, edited by Wendorf, F., pp. 933. Monographs of the School of American Research No. 17. School of American Research, Santa Fe.Google Scholar
Mannering, J. V, and Meyer, L. D. 1963 The Effects of Various Rates of Surface Mulch on Infiltration and Erosion. Soil Science Society of America Proceedings 27 : 8486.Google Scholar
Maxwell, T. D., and Anschuetz, K. F. 1992 The Southwestern Ethnographic Record and Prehistoric Agricultural Diversity. In Gardens of Prehistory : The Archaeology of Settlement Agriculture in Greater Mesoamerica, edited by Killion, T. W., pp. 3568. University of Alabama Press, Tuscaloosa.Google Scholar
Othieno, C. O., and Ahn, P. M. 1980 Effects of Mulches on Soil Temperature and Growth of Teaplants in Kenya. Experimental Agriculture 16 : 287294.Google Scholar
Poesen, J. 1985 Surface Sealing on Loose Sediments : The Role of Texture, Slope and Position of Stones in the Top Layer. In Assessment of Soil Surface Sealing and Crusting, edited by Callebaut, F., Gabriels, D. and deBoodt, M., pp. 354362. Proceedings of the International Symposium on the Assessment of Soil Surface Sealing and Crusting, Ghent, Belgium.Google Scholar
Rodale, J. I. 1949 Stone Mulching in the Garden. Rodale Press, Emmaus, Pennsylvania.Google Scholar
Sandor, J. A., Gersper, P. L., and Hawley, J. W. 1986 Soils at Prehistoric Agricultural Terracing Sites in New Mexico : (I) Site Placement, Soil Morphology and Classification; (II) Organic Matter and Bulk Density Changes; (III) Phosphorus, Selected Micronutrients, and pH. Soil Science Society of America Journal 50(1) : 166180.CrossRefGoogle Scholar
Smith, L. P. 1975 Methods in Agricultural Meteorology. Elsevier Scientific Publishing, New York City.Google Scholar
Tsiang, T. C. 1948 Soil Conservation : An International Study. FAO Agricultural Studies No. 4. United Nations Food and Agriculture Organization (UNFAO), Washington, DC.Google Scholar
Unger, Paul W. 1971 Soil Profile Gravel Layers : (I) Effect on Water Storage, Distribution, and Evaporation; (II) Effect on Growth and Water Use by a Hybrid Forage Sorghum. Soil Science Society of America Proceedings 35 : 631634, 980983.CrossRefGoogle Scholar
Unger, P. W. 1983 Water Conservation : Southern Great Plains. In Dryland Agriculture, edited by Dregne, H. E. and Willis, W. O., pp. 3556. Soil Science Society of America, Madison, Wisconsin.Google Scholar
Walker, J. M. 1969 One-degree Increments in Soil Temperatures Affect Maize Seedling Behavior. Soil Science Society of America Proceedings 33(5) : 729736.Google Scholar