Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T13:42:58.091Z Has data issue: false hasContentIssue false

Assessment of the Gripability of Textured Ceramic Surfaces

Published online by Cambridge University Press:  20 January 2017

Matthew T. Boulanger
Affiliation:
Department of Anthropology, 107 Swallow Hall, University of Missouri, Columbia, Missouri 65211 ([email protected])
Corey M. Hudson
Affiliation:
Informatics Institute, 241 Engineering West, University of Missouri, Columbia, Missouri 65211 ([email protected])

Abstract

Archaeologists have suggested that various methods of surface texturing, specifically those resulting in alternating ridges and grooves, affect the gripability of a ceramic vessel. Various methods of vessel texturing were applied to ceramic test tiles and evaluated using a tribometer outfitted with a malleable skinlike substrate. Nontextured (smoothed) ceramic tiles were similarly evaluated. Tiles were evaluated under both dry and wet conditions. Coefficients of static friction suggest that, under wet and dry conditions, smoothed surfaces generate less friction than textured surfaces and that not all textured surfaces produce the same amount of friction. Results indicate that vessel-wall texturing may be an adaptation for increased vessel longevity. Explanations of the development and use of textured pottery must now consider gripability along with a variety of factors related to vessel performance.

Resumen

Resumen

Los arqueólogos han sugerido que varios métodos de texturizar una superficie, específicamente los que implican estrías, afectan la habilidad de asir una vasija cerãmica. Se sometieron a prueba piezas de cerámica con varios métodos de estriar. Esas fueron evaluadas empleando un tribómetro equipado de un sustrato de superficie dúctil. Igualmente se evaluaron losas sin textura (lisas). Estas se evaluaron bajo condiciones tanto húmedas como secas. Los coeficientes de fricción estática sugieren que, bajo condiciones húmedas y secas, las superficies alisadas generan menos fricción de la que generan las estriadas, y que todas las superficies estriadas no producen la misma cantidad de fricción. Los resultados indican que la estría de la vasija puede ser una adaptación para aumentar su duración. Las explicaciones del desarrollo y del uso de vasijas texturizadas deben ahora considerar la habilidad de agarre como una variedad de factores relacionados a la ejecución de la vasija misma.

Type
Reports
Copyright
Copyright © The Society for American Archaeology 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Asserin, J., Zahouani, H., Humbert, P., Couturaud, V., and Mougin, D. 2000 Measurement of the Friction Coefficient of the Human Skin in vivo Quantification of the Cutaneous Smoothness. Colloids and Surfaces B: Biointerfaces 19:112.Google Scholar
Blinman, Eric 1993 Anasazi Pottery; Evolution of a Technology. Expedition 35:1422.Google Scholar
Blau, Peter J. 2008 Friction Science and Technology: From Concepts to Applications. CRC Press, Boca Raton, Florida.CrossRefGoogle Scholar
Braun, David P. 1983 Pots as Tools. In Archaeological Hammers and Theories, edited by James A. Moore and Arthur S. Keene, pp. 107134. Academic Press, New York.CrossRefGoogle Scholar
Gordon, Bronitsky, and Hamer, Robert 1986 Experiment in Ceramic Technology: The Effect of Various Tempering Materials on Impact and Thermal Shock Resistance. American Antiquity 51:89101.Google Scholar
Cogswell, James W., Neff, Hector, and Glascock, Michael D. 1998 Analysis of Shell-Tempered Pottery Replicates: Implications for Provenance Studies. American Antiquity 63:6372.Google Scholar
Cogswell, James W., and O'Brien, Michael J. 1997 A Comparison of Laboratory Results to Archaeological Data: Pottery Surface Treatments in Eastern Missouri. Southeastern Archaeology 16:169174.Google Scholar
De, Kaushik, and Horwitz, James L. 2006 Executive Summary of the Preliminary UTA Study of the New NBA Synthetic Basketballs. Electronic document, http://www.aps.org/about/pressreleases/20061028.cfm, accessed November 14, 2007.Google Scholar
Derler, S., Schrade, U., and Gerhardt, L.-C. 2007 Tribology of Human Skin and Mechanical Skin Equivalents in Contact with Textiles. Wear 263:11121116.Google Scholar
Feathers, James K. 1989 Effects of Temper on Strength of Ceramics: Response to Bronitsky and Hamer. American Antiquity 54:579588.Google Scholar
Feathers, James K., and Scott, William D. 1989 Prehistoric Ceramic Composites from the Mississippi Valley. American Ceramic Society Bulletin 68:554557.Google Scholar
Hoard, Robert J., O'Brien, Michael J., Khorasgany, Mohammad G., and Gopalaratnam, Vellore S. 1995 A Materials-Science Approach to Understanding Limestone-Tempered Pottery from the Midwestern United States. Journal of Archaeological Science 22:823832.Google Scholar
Joganich, Tim, and McCuen, Len 2005 Influence of Groove Count on Slip Resistance Using NTL Test Feet. Journal of Forensic Sciences 50:11411146.CrossRefGoogle ScholarPubMed
Lavin, Lucianne 1987 The Windsor Ceramic Tradition in Southern New England. North American Archaeologist 8:2340.Google Scholar
Luedtke, Barbara E. 1985 The Camp at the Bend in the River: Prehistory at the Shattuck Farm Site. Occasional" Publications in Archaeology and History. Massachusetts Historical Commission, Boston.Google Scholar
Luedtke, Barbara E. 1986 Regional Variation in Massachusetts Ceramics. North American Archaeologist 7:113135.Google Scholar
Mabry, Jonathan, Skibo, James M., Schiffer, Michael B., and Kvamme, Kenneth 1988 Use of a Falling-Weight Tester for Assessing Ceramic Impact Strength. American Antiquity 53:829839.Google Scholar
Matson, Frederick R. 1965 Ceramic Ecology: An Approach to the Study of Early Cultures of the Near East. In Ceramics and Man, edited by Frederick R. Matson, pp. 202218. Aldine, Chicago.Google Scholar
McBride, Kevin A. 1984 Prehistory of the Lower Connecticut River Valley. Ph.D. dissertation, University of Connecticut, Storrs. University Microfilms, Ann Arbor, Michigan.Google Scholar
Neupert, Mark A. 1994 Strength Testing Archaeological Ceramics: A New Perspective. American Antiquity 59:709723.Google Scholar
O'Brien, Michael J., and Holland, Thomas D. 1992 The Role of Adaptation in Archaeological Explanation. American Antiquity 57:3659.Google Scholar
O'Brien, Michael J., Holland, Thomas D., Hoard, Robert J., and Fox, Gregory L. 1994 Evolutionary Implications of Design and Performance Characteristics of Prehistoric Pottery. Journal of Archaeological Method and Theory 1:259304.Google Scholar
Petersen, James B. 1980 The Middle Woodland Ceramics of the Winooski Site, A.D. 1–1000. Vermont Archaeological Society, Burlington, Vermont.Google Scholar
Petersen, James B., and Sanger, David 1991 An Aboriginal Ceramic Sequence for Maine and the Maritime Provinces. In Prehistoric Archaeology in the Maritime Provinces: Past and Present Research, edited by Michael Deal and Susan Blair, pp. 113170. New Brunswick Archaeological Services, Fredericton, New Brunswick.Google Scholar
Pierce, Christopher D. 2005 Reverse Engineering the Ceramic Cooking Pot: Cost and Performance Properties of Plain and Textured Vessels. Journal of Archaeological Method andTheory 12:117157.Google Scholar
Rice, Prudence M. 1987 Pottery Analysis: A Sourcebook. University of Chicago Press, Chicago.Google Scholar
Ritchie, William A. 1980 The Archaeology of New York State. Harbor Hill Books, Harrison, New York.Google Scholar
Ritchie, William A., and MacNeish, Richard S. 1949 The Pre-Iroquoian Pottery of New York State. American Antiquity 15:97124.Google Scholar
Rouse, Irving 1947 Ceramic Traditions and Sequences in Connecticut. Bulletin of the Archaeological Society of Connecticut 21:1025.Google Scholar
Rye, Owen S. 1976 Keeping Your Temper under Control: Materials and the Manufacture of Papuan Pottery. Archaeology and Physical Anthropology in Oceania 11:106137.Google Scholar
Schiffer, Michael B. 1990 The Influence of Surface Treatment on Heating Effectiveness of Ceramic Vessels. Journal of Archaeological Science 17:373381.Google Scholar
Schiffer, Michael B., and Skibo, James. M. 1987 Theory and Experiment in the Study of Technological Change. Current Anthropology 28:595622.CrossRefGoogle Scholar
Schiffer, Michael B., and Skibo, James. M. 1997 The Explanation of Artifact Variability. American Antiquity 62:2750.Google Scholar
Schiffer, Michael B., Skibo, James M., Boelke, Tamara C., Neupert, Mark A., and Aronson, Meredith 1994 New Perspectives on Experimental Archaeology: Surface Treatments and Thermal Response of the Clay Cooking Pot. American Antiquity 59:197217.Google Scholar
Shepard, Anna O. 1965 Ceramics for the Archaeologist. Carnegie Institution of Washington, Washington, D.C. Google Scholar
Skibo, James M., Butts, Tamara C., and Schiffer, Michael B. 1997 Ceramic Surface Treatment and Abrasion Resistance: An Experimental Study. Journal of Archaeological Science 24:311317.Google Scholar
Snow, Dean R. 1980 The Archaeology of New England. Academic Press, New York.Google Scholar
Sokal, Robert R., and James Rohlf, F. 1981 Biometry. Freeman, New York.Google Scholar
Young, Lisa C., and Stone, Tammy 1990 The Thermal Properties of Textured Ceramics: An Experimental Study. Journal of Field Archaeology 17:195203.Google Scholar
Zhang, M., and Mak, A. F. T. 1999 In vivo Friction Properties of Human Skin. Prosthetics and Orthotics International 23:135141.Google Scholar