Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T13:17:16.659Z Has data issue: false hasContentIssue false

An Assessment of the Acid-Extraction Approach to Compositional Characterization of Archaeological Ceramics

Published online by Cambridge University Press:  20 January 2017

Hector Neff
Affiliation:
Research Reactor Center, University of Missouri, Columbia, MO 65211
Michael D. Glascock
Affiliation:
Research Reactor Center, University of Missouri, Columbia, MO 65211
Ronald L. Bishop
Affiliation:
Conservation Analytical Laboratory, Smithsonian Institution, Washington, DC 20560
M. James Blackman
Affiliation:
Conservation Analytical Laboratory, Smithsonian Institution, Washington, DC 20560

Abstract

We criticize the acid-extraction approach to chemical characterization of ceramics previously advocated in this journal by Burton and Simon (1993). The instrumental technique used by Burton and Simon (inductively coupled plasma emission spectroscopy [ICP]) is a highly precise chemical characterization technique, but noise introduced by characterizing acid extracts from sherds nullifies the usefulness of the resulting elemental concentration data for archaeological sourcing.

Resumen

Resumen

Criticamos el uso de extractos de ácido en la caracterización química de la cerámica, que Burton y Simon (1993) defendieron recientemente en esta revista. La técnica instrumental utilizada por Burton y Simon (espectroscopia de plasma de acoplamiento inductivo) es una tecnica de caracterización química altamente precisa. Sin embargo, la interferencia introducida al caracterizar los extractos de ácido de los tiestos anula la utilidad de las concentraciones de elementos como datos que pueden reflejar lasfuentes de cerámica arqueológica.

Type
Comments
Copyright
Copyright © The Society for American Archaeology 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Arnold, D. E., Neff, H., and Bishop, R. L. 1991 Compositional Analysis and “Sources” of Pottery: An Ethnoarchaeological Approach. American Anthropologist 93: 7090.Google Scholar
Baxter, M. J. 1992 Archaeological Uses of the Biplot—A Neglected Technique? In Computer Applications and Quantitative Methods in Archaeology, 1991, edited by Lock, G. and Moffett, J., pp. 141148. BAR International Series S577. British Archaeological Reports, Oxford.Google Scholar
Baxter, M. J., and Heyworth, M. P. 1991 Comparing Correlation Matrices: with Applications in the Study of Artefacts and Their Chemical Compositions. In Archaeometry ‘90, edited by Pernicka, E. and Wagner, G.A. pp. 355364. Birkhauser Verlag, Berlin.Google Scholar
Bieber, A. M., Jr. 1977 Neutron Activation Analyzing Archaeological Ceramics from Cyprus. Unpublished Ph.D. Dissertation, University of Connecticut, Storrs.Google Scholar
Bishop, R. L., Harbottle, G., and Sayre, E. V. 1982 Chemical and Mathematical Procedures Employed in the Mayan Fine Paste Ceramics Projects. In Analysis of Fine Paste Ceramics, edited by SablofF, J. A., pp. 272282. Memoirs of the Peabody Museum of Archaeology and Ethnology Vol. 15, part 2. Peabody Museum, Harvard University, Cambridge, Massachusetts.Google Scholar
Bishop, R. L., and Neff, H. 1989 Multivariate Analysis of Compositional Data in Archaeology. Archaeological Chemistry IV, edited by Allen, R. O., pp. 576586. Advances in Chemistry Series 220. American Chemical Society, Washington, D.C. Google Scholar
Bishop, R. L., Rands, R. L., and Holley, G. R. 1982 Ceramic Compositional Analysis in Archaeological Perspective. In Advances in Archaeological Method and Theory, vol. 5, edited by Schiffer, M. B., pp. 275330. Academic Press, New York.Google Scholar
Blackman, M. J., Stein, G. J., and Vandiver, P. B. 1993 The Standardization Hypothesis and Ceramic Mass Production: Technological, Compositional, and Metric Indexes of Craft Specialization at Tell Leilan, Syria. American Antiquity 58: 6080.Google Scholar
Burton, J. H., and Simon, A. W. 1993 Acid Extraction as a Simple and Inexpensive Method for Compositional Characterization of Archaeological Ceramics. American Antiquity 58: 4559.Google Scholar
Cogswell, J. W, Neff, H., and Glascock, M. D. 1996 The Effect of Firing Temperature on the Elemental Characterization of Pottery. Journal of Archaeological Science 23: 283287.Google Scholar
Cogswell, J. W, Neff, H., and Glascock, M. D. 1992 Ultrasonic Disaggregation and INAA of Textural Fractions of Tucson Basin and Ohio Valley Ceramics. In Chemical Characterization of Ceramic Pastes in Archaeology, edited by Neff, H., pp. 93111. Monographs in World Archaeology No. 7. Prehistory Press, Madison, Wisconsin.Google Scholar
Fish, P. R., Fish, S. K., Whittlesey, S., Neff, H., Glascock,, M. D. 1992 An Evaluation of the Production and Exchange of Tanque Verde Red-on-Brown Ceramics in Southern Arizona. In Chemical Characterization of Ceramic Pastes in Archaeology, edited by Neff, H., pp. 233254. Monographs in World Archaeology No. 7. Prehistory Press, Madison, Wisconsin.Google Scholar
Gaines, A. M., and Handy, J. L. 1977 Ultrasonic Disaggregation of Potsherds for Mineral Separation and Analysis. American Antiquity 42: 252254.Google Scholar
Gilbert, A. S., Harbottle, G., and DeNoyelles, D. 1993 A Ceramic Chemistry Archive for New Netherland/New York. Historical Archaeology 27: 1756.Google Scholar
Glascock, M. D. 1992 Characterization of Archaeological Ceramics at MURR by Neutron Activation Analysis and Multivariate Statistics. In Chemical Characterization of Ceramic Pastes in Archaeology, edited by Neff, H., pp. 1126. Monographs in World Archaeology No. 7. Prehistory Press, Madison, Wisconsin.Google Scholar
Harbottle, G. 1976 Activation Analysis in Archaeology. In Radiochemistry, v. 3, edited by A, G. W.. Newton, pp. 3372. Chemical Society, London.Google Scholar
Harbottle, G. 1982 Provenience Studies Using Neutron Activation Analysis: The Role of Standardization. In Archaeological Ceramics, edited by Olin, J. S. and Franklin, A.D. pp. 6777. Smithsonian Institution Press, Washington, D.C. Google Scholar
Hart, F. A., Storey, J. M. V, Adams, S. J., Symonds, R. P., 1987 An Analytical Study, Using Inductively Coupled Plasma (ICP) Spectrometry, of Samian and Colourcoated Wares from the Roman Town at Colchester Together with Related Continental Samian Wares. Journal of Archaeological Science 14: 577598.Google Scholar
Henrickson, R. C, and Blackman, M. J. 1992 Scale and Paste: Investigating the Production of Godin III Painted Buff Ware. In Chemical Characterization of Ceramic Pastes in Archaeology, edited by Neff, H., pp. 125144. Monographs in World Archaeology No. 7. Prehistory Press, Madison, Wisconsin.Google Scholar
Hodge, M. G., Neff, H., Blackman, M. J., and Mine, L. D. 1993 The Regional Structure of Black-on-orange Ceramic Production in the Aztec Empire's Heartland. Latin American Antiquity 4: 130157.Google Scholar
Neff, H. 1994 RQ-mode Principal Components Analysis of Ceramic Compositional Data. Archaeometry 36: 115130.Google Scholar
Tangri, D., and R. V S., Wright 1993 Multivariate Analysis of Compositional Data: Applied Comparisons Favour Standard Principal Components Analysis over Aitchison's Loglinear Contrast Method. Archaeometry 35: 103115.Google Scholar