Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T17:39:18.923Z Has data issue: false hasContentIssue false

Zinc as a Paleodietary Indicator: An Issue of Theoretical Validity in Bone-Chemistry Analysis

Published online by Cambridge University Press:  20 January 2017

Joseph A. Ezzo*
Affiliation:
Statistical Research, Inc., P.O. Box 31865, Tucson, AZ 85751-1865

Abstract

The use of the concentrations of zinc in archaeological bone as an indicator of past diets and/or health conditions has become widely accepted in bone-chemistry analysis, despite the fact that the theoretical validity for such an application has not been established. In this paper I present a series of critical variables—such as elemental metabolism, bone physiology, the relationship between dietary intakes of an element and its concentration in bone, trophic-level separation in the foodweb, and diagenetic variability—that must be addressed in the process of theoretical validation. I also discuss how studies that support the use of zinc as paleodietary indicator have generally focused on only one or perhaps two of these criteria. Until a sound model based on physiological principles is developed, the use of zinc as a paleodietary indicator remains unproven.

Resumen

Resumen

El uso de concentraciones de zinc en huesos arqueológicos como indicadores de dieta y/o condiciones de salud prehistóricas ha sido ampliamente aceptado en el análisis de la química de hueso, a pesar de que la validez teórica de esta aplicación aún no se ha establecido. En este artículo presento una serie de variables críticas—tales como metabolismo elemental, fisiología ósea, la relación entre la consumición de un elemento y su concentración en los huesos, el nivel de separación en la cadena trófica, y variabilidad diagenética—que deben ser discutidas en el proceso de validación teórica. También discuto cómo los estudios que apoyan el uso del zinc como indicador paleodietético generalmente se han enfocado en sólo uno o quizás dos de estos criterios. Mientras no se desarrolle un modelo sólido basado en principios fisiológicos, el uso del zinc como indicador paleodietético continuará sin ser demostrado.

Type
Articles
Copyright
Copyright © The Society for American Archaeology 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Aitkens, J. M. 1976 Factors Affecting the Distribution of Zinc in the Human Skeleton. Calcified Tissue Research 20 : 2330.Google Scholar
Alhava, E. M., Olkkonen, H., Puittinen, J., and Nokso-Koivisto, V-M. 1977 Zinc Content of Human Cancellous Bone. Acta Orthopaedica Scandinavia 48 : 14.Google Scholar
Arrhenius, B. 1990 Trace Element Analysis on Human Skulls. Laborativ Arkeologi 4 : 1520.Google Scholar
Aufderheide, A. C. 1989 Chemical Analysis of Skeletal Remains. In Reconstruction of Life from the Skeleton, edited by Iscan, M. Y. and A, K.. Kennedy, R., pp. 237260. Liss, New York.Google Scholar
Avioli, L. V. 1988 Calcium and Phosphorus. In Modern Nutrition in Health and Disease, 7th ed., edited by Shils, M. E. and Young, V. R., pp. 142158. Lea and Febiger, Philadelphia.Google Scholar
Beck, L. A. 1985 Bivariate Analysis of Trace Elements in Bone. Journal of Human Evolution 14 : 493502.Google Scholar
Blakely, R. L., and Beck, L. A. 1981 Trace Elements, Nutritional Status, and Social Stratification at Etowah, Georgia. Annals of the New York Academy of Science 376 : 417431.CrossRefGoogle ScholarPubMed
Brown, A. B. 1973 Bone Strontium as a Dietary Indicator in Human Skeletal Populations. Ph. D. dissertation, University of Michigan. University Microfilms, Ann Arbor.Google Scholar
Brown, A. B., and Blakely, R. L. 1985 Biocultural Adaptations as Reflected in Trace Element Distribution. Journal of Human Evolution 14 : 461468.Google Scholar
Brudevold, F., Steadman, L. T., Spinelli, M. A., Amdur, B. H., and Gron, P. 1963 A Study of Zinc in Human Teeth. Archives of Oral Biology 8 : 135144.Google Scholar
Buikstra, J. E., Frankenberg, S., Lambert, J. B., and Li-Ang, Xue 1989 Multiple Elements : Multiple Expectations. In The Chemistry of Prehistoric Human Bone, edited by Price, T. D., pp. 155210. Cambridge University Press, Cambridge.Google Scholar
Burton, J. H., and Price, T. D. 1990a Paleodietary Applications of Barium Values in Bone. In Proceedings of the 27th International Symposium on Archaeometry, edited by Pernicka, E. and Wagner, G. A., pp. 787795. Berkhauser Verlag AG Basel, Heidelberg.Google Scholar
Burton, J. H., and Price, T. D. 1990b The Ratio of Barium to Strontium as a Paleodietary Indicator of Consumption of Marine Resources. Journal of Archaeological Science 17 : 547557.Google Scholar
Byrne, K. B. and Parris, D. C. 1987 Reconstruction of the Diet of the Middle Woodland Amerindian Population at Abbot Farm by Bone Trace-Element Analysis. American Journal of Physical Anthropology 74 : 373384.Google Scholar
Calhoun, N. R., Smith, J. C., and Becker, K. L. 1974 The Role of Zinc in Bone Metabolism. Clinical Orthopaedics and Related Research 103 : 212234.Google Scholar
Casey, C. E., Guthrie, B. E., and McKenzie, J. M. 1982 Trace Elements in Tissue from New Zealanders : A Compilation of Published Data. New Zealand Medical Journal 10 November : 768771.Google ScholarPubMed
Comar, C. L., Russell, R. S., and Wasserman, R. H. 1957 Strontium-Calcium Movement from Soil to Man. Science 126 : 485496.Google Scholar
Conner, M. D., and Slaughter, D. 1984 Diachronic Investigation of Eskimo Diet Utilizing Trace Element Analysis. Arctic Anthropology 21 : 123134.Google Scholar
Cousins, R. J., and Hempe, J. M. 1990 Zinc. In Present Knowledge in Nutrition, edited by Brown, M. L., pp. 251260. International Life Science Institute, Washington, D. C. Google Scholar
Davies, N. T. 1980 Studies on the Absorption of Zinc by Rat Intestine. British Journal of Nutrition 43 : 189203.Google Scholar
Eco, U. 1989 Foucault's Pendulum. Translated by Weaver, W.. Harcourt Brace Jovanovich, Orlando.Google Scholar
Edward, J. B., and Benfer, R. A. 1993 The Effects of Diagenesis on the Paloma Skeletal Material. In Investigations of Ancient Human Tissue, edited by Sandford, M. K., pp. 183268. Gordon and Breach, Langhorne, Pennsylvania.Google Scholar
Edward, J., Fossey, J. M., and Yaffe, L. 1984 Analysis by Neutron Activation of Human Bone from the Hellenistic Cemetery at Asine, Greece. Journal of Field Archaeology 11 : 3746.Google Scholar
Elias, R. W., Hirao, Y., and Patterson, C. C. 1982 The Circumvention of the Natural Biopurification of Calcium Nutrient Pathways by Atmospheric Inputs of Industrial Lead. Geochimica et Cosmochimica Acta 46 : 25612580.Google Scholar
Ezzo, J. A. 1991 Dietary Change at Grasshopper Pueblo, Arizona : The Evidence from Bone Chemistry Analysis. Unpublished Ph. D. dissertation, Department of Anthropology, University of Wisconsin, Madison.Google Scholar
Ezzo, J. A. 1992 A Test of Diet Versus Diagenesis at Ventana Cave, Arizona. Journal of Archaeological Science 19 : 2337.Google Scholar
Flanagan, P. R. 1984 A Model to Produce Pure Zinc Deficiency in Rats and Its Use to Demonstrate that Dietary Phytate Increases the Excretion of Endogenous Zinc. Journal of Nutrition 114 : 493502.CrossRefGoogle Scholar
Fomaciari, G., Trevisani, E., and Ceccanti, B. 1984 Indagini paleonutrizionali e determinazione del piombo osseo mediante spettroscopia ad assorbimento atomico sui resti schelectrici di e poca Tardo-Romana “IV Secolo d. C. ” Delia “Villa dei Goriani” (Roma). Archeologio Antropologio e Etnologio 114 : 149175.Google Scholar
Francalacci, P. 1989 Dietary Reconstruction at Arene Candide Rave (Liguria, Italy) by Means of Trace Element Analysis. Journal of Archaeological Science 16 : 109124.CrossRefGoogle Scholar
Francalacci, P., and Tarli, S. Borgognini 1988 Multielement Analysis of Trace Elements and Preliminary Results on Stable Isotopes in Two Italian Prehistoric Sites, Methodological Aspects. In Trace Elements in Environmental History, edited by Grupe, G. and Herrmann, B., pp. 4152. Springer-Verlag, Berlin.Google Scholar
Geidel, R. A. 1982 Trace Element Studies from Mississippian Skeletal Remains : Findings from Neutron Activation Analysis. Masca Journal 2 : 1316.Google Scholar
Gilbert, R. I. 1975 Trace Element Analyses of Three Skeletal Amerindian Populations at Dickson Mounds. Ph. D. dissertation, University of Massachusetts. University Microfilms, Ann Arbor.Google Scholar
Gilbert, R. I. 1977 Applications of Trace Element Research to Problems in Archaeology. In Biocultural Adaptation in Prehistoric America, edited by Blakely, R. L., pp. 85100. University of Georgia, Athens.Google Scholar
Gilbert, R. I. 1985 Stress, Paleonutrition, and Trace Elements. In The Analysis of Prehistoric Diets, edited by Gilbert, R. I. and Mielke, J. H., pp. 339358. Academic Press, Orlando.Google Scholar
Guggenheim, K., and Gaster, D. 1973 The Role of Manganese, Copper, and Zinc in the Physiology of Bones and Teeth. In Biological Mineralization, edited by Zipkin, I., pp. 443462. John Wiley and Sons, New York.Google Scholar
Hambidge, K. M. 1972 Low Levels of Zinc in Hair, Anorexia, Poor Growth, and Hypogeusia in Children. Pediatric Research 6 : 868874.Google Scholar
Hambidge, K. M., Casey, C. L., and Krebs, N. F. 1986 Zinc. In Trace Elements in Human and Animal Nutrition, 5th ed., vol. 2, edited by Mertz, W., pp. 1137. Academic Press, Orlando.Google Scholar
Harritt, R. K., and Radosevich, S. C. 1992 Results of Instrument Neutron-Activation Trace-Element Analysis of Human Remains from the Naknek Region, Southwest Alaska. American Antiquity 57 : 288299.Google Scholar
Hatch, J. W., and Geidel, R. A. 1983 Tracing Status and Diet in Prehistoric Tennessee. Archaeology January-February : 5659.Google Scholar
Hatch, J. W., and Geidel, R. A. 1985 Status-Specific Dietary Variation in Two World Cultures. Journal of Human Evolution 14 : 469476.Google Scholar
Haumont, S. 1961 Distribution of Zinc in Bone Tissue. Journal of Histochemistry and Phytochemistry 9 : 141145.Google Scholar
Haumont, S., and McLean, F. C. 1966 Zinc and Physiology of Bone. In Zinc Metabolism, edited by Prasad, A. S., pp. 169186. Thomas, Springfield, Illinois.Google Scholar
Hoadley, J. E., Leinart, A. S., and Cousins, R. J. 1988 Relationship of “Zn Absorption Kinetics to Intestinal Metallothionein in Rats : Effects of Zinc Depletion and Fasting. Journal of Nutrition 118 : 497502.Google Scholar
Hogue, M. E., Pond, W., Comar, C. L., Alexander, G. V., and Hardy, E. 1961 Comparative Utilization of Dietary Calcium and Sr-90 by Pigs and Sheep. Journal of Animal Science 20 : 514517.Google Scholar
Huber, A. M., and Gershoff, S. N. 1970 Effects of Dietary Zinc and Calcium on the Retention and Distribution of Zinc in Rats Fed Purified Diets. Journal of Nutrition 100 : 949954.CrossRefGoogle Scholar
Klepinger, L. L. 1984 Nutritional Assessment from Bone. Annual Renews in Anthropology 13 : 7596.Google Scholar
Klepinger, L. L. 1993 Culture, Health, and Chemistry : A Technological Approach to Discovery. In Investigations of Ancient Human Tissue, edited by Sandford, M. K., pp. 167180. Gordon and Breach, Langhorne, Pennsylvania.Google Scholar
Kreulter, P. A., and Czajka-Narins, D. M. 1987 Nutrition in Perspective. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
Kshirager, S. G., Loyd, E., and Vaughan, J. 1966 Discrimination Between Strontium and Calcium in Bone and the Transfer from Blood to Bone in the Rabbit. British Journal of Radiology 39 : 131140.Google Scholar
Lambert, J. B., and Weydert-Homeyer, J. 1993 The Fundamental Relationship Between Ancient Diet and the Inorganic Constituents of Bone as Derived from Feeding Experiments. Archaeometry 35 : 279294.Google Scholar
Lambert, J. B., Szpunar, C. B., and Buikstra, J. E. 1979 Chemical Analysis of Excavated Human Bone from Middle and Late Woodland Sites. Archaeometry 21 : 115129.Google Scholar
Lambert, J. B., Simpson, S. V., Buikstra, J. E., and Hanson, D. E. 1983 Electron Microscope Analysis of Elemental Distribution in Excavated Human Femurs. American Journal of Physical Anthropology 62 : 409424.Google Scholar
Lambert, J. B., Simpson, S. V., Szpunar, C. B., and Buikstra, J. E. 1984 Ancient Human Diet from Inorganic Analysis of Bone. Accounts of Chemical Research 17 : 298305.Google Scholar
Lambert, J. B., Simpson, S. V., Szpunar, C. B., and Buikstra, J. E. 1985 Bone Diagenesis and Dietary Analysis. Journal of Human Evolution 14 : 477482.Google Scholar
Lambert, J. B., Simpson, S. V., Weiner, S. G., and Buikstra, J. E. 1985 Induced Metal-Ion Exchange in Excavated Human Bone. Journal of Archaeological Science 12 : 8592.Google Scholar
Lambert, J. B., Vlasak, S. M., Thometz, A. C., and Buikstra, J. E. 1982 A Comparative Study of the Chemical Analysis of Ribs and Femurs in Woodland Populations. American Journal of Physical Anthropology 59 : 289294.Google Scholar
Lappaleinen, R., Knuuttila, M., and Slaminen, R. 1981 The Concentrations of Zn and Mg in Human Enamel and Dentine Related to Age and Their Concentrations in the Soil. Archives of Oral Biology 26 : 16.Google Scholar
Liden, K. 1990 A Diet Study from the Middle Neolithic Site Ire. Laborativ Arkeologi 4 : 2128.Google Scholar
Likins, R. C, McCann, H. G., Posner, A. S., and Scott, D. B. 1960 Comparative Fixation of Calcium and Strontium by Synthetic Hydroxyapatite. Journal of Biological Chemistry 235 : 21522156.Google Scholar
Lough, A. A., Rivera, J., and Comar, C. L. 1963 Retention of Strontium and Calcium and Phospohrus in Human Infants. Proceedings of the Society for Experimental Biological Medicine 112 : 631.Google Scholar
Macapinlac, A. P., Barney, G. H., Pearson, W. N., and Darby, W. J. 1967 Production of Zinc Deficiency in Squirrel Monkey (Saimiri sciureus). Journal of Nutrition 93 : 499510.Google Scholar
Menzel, R. G., and Heald, M. R. 1959 Strontium and Calcium Contents of Crop Plants in Relation to Exchangeable Strontium and Calcium in the Soil. Proceedings of the Soil Society of America 23 : 110112.Google Scholar
Morgan, M. E., and Schoeninger, M. J. 1989 Zinc and Strontium as Dietary Indicators in a Modern Tropical Community. Paper Presented at the 58th Annual Meeting of the American Association of Physical Anthropologists, San Diego.Google Scholar
National Research Council 1989 Recommended Dietary Allowances. 10th ed. National Academy Press, Washington, D. C. Google Scholar
Nielsen, F. H. 1986 Other Elements : Sb, Ba, B, Br, Cs, Ge, Rb, Ag, Sr, Sn, Ti, Zr, Be, Bi, Ga, Au, In, Nb, Sc, Te, Tl, W. In Trace Elements in Human and Animal Nutrition, 5th ed., vol. 2, edited by Mertz, W., pp. 415463. Academic Press, Orlando.Google Scholar
Nixon, G. S., Livingston, H. D., and Smith, H. 1967 Estimation of Zinc in Human Enamel by Activation Analysis. Archives of Oral Biology 12 : 411416.Google Scholar
Price, T. D. 1989 Multielement Studies of Diagenesis in Prehistoric Bone. In The Chemistry of Prehistoric Human Bone, edited by Price, T. D., pp. 126154. Cambridge University Press, Cambridge.Google Scholar
Price, T. D., Schoeninger, M. J., and Armelagos, G. J. 1985 Bone Chemistry and Past Behavior : An Overview. Journal of Human Evolution 14 : 419447.Google Scholar
Price, T. D., Blitz, J., Burton, J. H., and Ezzo, J. A. 1992 Diagenesis in Prehistoric Bone : Problems and Solutions. Journal of Archaeological Science 19 : 513529.Google Scholar
Quarterman, J., and Humphries, W. R. 1983 The Production of Zinc Deficiency in the Guinea Pig. Journal of Comparative Pathology 93 : 261270.Google Scholar
Radosevich, S. C. 1993 The Six Deadly Sins of Trace Element Analysis : A Case of Wishful Thinking in Science. In Investigations of Ancient Human Tissue, edited by Sandford, M. K., pp. 269332. Gordon and Breach, Langhorne, Pennsylvania.Google Scholar
Rheingold, A. L., Hues, S., and Cohen, M. N. 1983 Strontium and Zinc Content in Bones as an Indication of Diet. Journal of Chemical Education 60 : 233234.Google Scholar
Rosenthal, H. L. 1981 Content of Stable Strontium in Man and Animal Biota. In Handbook of Stable Strontium, edited by Skoryna, S. C., pp. 503514. Plenum Press, New York.Google Scholar
Rosenthal, H. L., Cochran, O. A., and Eves, M. M. 1972 Strontium Content of Mammalian Bone, Diet, and Excreta. Environmental Research 5 : 182191.CrossRefGoogle ScholarPubMed
Samachson, J. 1967 Mechanisms of Exchange of Calcium in Bone Material. Nature 216 : 193194.Google Scholar
Samachson, J., and Schmitz, A. 1968 The Reaction of H+ and Zn++ with the Surfaces of Bone and Bone Mineral. Biochimica et Biophysica Acta 170 : 40919.Google Scholar
Samachson, J., Dennis, J., Fowler, R., and Schmitz, A. 1967 Reaction of “Zn with the Surfaces of Bone and Bone Mineral. Biochimica et Biophysica Acta 148 : 767773.Google Scholar
Sandford, M. K. 1992 A Reconsideration of Trace Element Analysis of Prehistoric Bones. In The Skeletal Biology of Past Peoples : Research Methods, edited by Saunders, S. R. and Katzenberg, M. A., pp. 79103. Wiley-Liss, New York.Google Scholar
Sandford, M. K. 1993 Understanding the Biogenic-Diagenetic Continuum : Interpreting Elemental Concentrations of Archaeological Bone. In Investigations of Ancient Human Tissue, edited by Sandford, M. K., pp. 357. Gordon and Breach, Langhorne, Pennsylvania.Google Scholar
Schachter, D. 1963 Vitamin D and the Active Transport of Calcium by the Small Intestine. In The Transfer of Calcium and Strontium Across Biological Membranes, edited by Wasserman, R. H., pp. 197212. Academic Press, New York.Google Scholar
Schoeninger, M. J. 1989 Reconstructing Prehistoric Human Diet. In The Chemistry of Prehistoric Human Bone, edited by Price, T. D., pp. 3867. Cambridge University Press, Cambridge.Google Scholar
Schroeder, H. A., Tipton, I. H., and Nason, A. P. 1972 Trace Metals in Man : Strontium and Barium. Journal of Chronic Diseases 25 : 491517.Google Scholar
Schroeder, H. A., Nason, A. P., Tipton, I. H., and Balassa, J. J. 1967 Essential Trace Metals in Man : Zinc. Journal of Chronic Diseases 20 : 179210.Google Scholar
Sillen, A. 1986 Biogenic and Diagenetic Sr/Ca in Plio-Pleistocene Fossils of the Omo Shunguru Formation. Paleobiology 12 : 311323.Google Scholar
Sillen, A. 1989 Diagenesis of the Inorganic Phase of Cortical Bone. In The Chemistry of Prehistoric Human Bone, edited by Price, T. D., pp. 211229. Cambridge University Press, Cambridge.Google Scholar
Sillen, A., and LeGeros, R. 1991 Solubility Profiles of Synthetic Apatites and of Modern and Fossil Bones. Journal of Archaeological Science 18 : 385397.Google Scholar
Sillen, A., Sealy, J. C., and Merwe, N. J. van der 1989 Chemistry and Paleodietary Research : No More Easy Answers. American Antiquity 54 : 504512.CrossRefGoogle Scholar
Silverberg, S. J. 1990 The Distribution and Balance of Calcium, Magnesium, and Phosphorus. In Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, edited by Favus, M. J., pp. 3032. American Society for Bone and Mineral Research, Kelseyville, California.Google Scholar
Solomons, N. W. 1988 Zinc and Copper. In Modern Nutrition in Health and Disease, 7th ed., edited by Shils, M. E. and Young, V. R., pp. 238262. Lea and Febiger, Philadelphia.Google Scholar
Spadaro, J. A., Becker, R. O., and Bachman, C. H. 1976 The Distribution of Trace Metal Ions in Bone and Tendon. Calcified Tissue Research 6 : 4954.Google Scholar
Spencer, H., Warren, J. M., Kramer, L., and Samachson, J. 1973 Passage of Calcium and Strontium Across the Intestine in Man. Clinical Orthopaedics and Related Research 91 : 225234.Google Scholar
Steel, L., and Cousins, C. R. 1985 Kinetics of Zinc Absorption by Luminally and Vascularly Perfused Rat Intestine. American Journal of Physiology 248 : G46-G53.Google Scholar
Taylor, D. M., Duggan, M., and Bligh, P. 1962 The Absorption of Calcium, Strontium, Barium, and Radium from the Gastrointestinal Tract of the Rat. Biochemistry Journal 83 : 2529.Google Scholar
Toots, H., and Voorheis, M. R. 1965 Strontium in Fossil Bones and the Reconstruction of Food Chains. Science 149 : 854855.Google Scholar
Wallace, A., and Romney, E. M. 1971 Some Interactions of Ca, Sr, and Ba in Plants. Agronomy Journal 63 : 245249.Google Scholar
Wasserman, R. H. 1963 Vitamin D and the Absorption of Calcium and Strontium in vivo. In The Transfer of Calcium and Strontium Across Biological Membranes, edited by Wasserman, R. H., pp. 211228. Academic Press, New York.Google Scholar
Weydert, J. M. 1990 Elemental Analysis of Bone for Ancient Diet Reconstruction. Ph. D. dissertation, Northwestern University. University Microfilms, Ann Arbor.Google Scholar
Whitmer, A. M., Ramenofsky, A. F., Thomas, J., Thibodeaux, L. J., Field, S. D., and Miller, B. J. 1989 Stability or Instability : The Role of Diffusion in Trace Element Studies. In Archaeological Method and Theory, vol. 1, edited by Schif Ter, M. B., pp. 205273. University of Arizona Press, Tucson.Google Scholar
Williams, J. T. 1993 Benefits and Obstacles of Routine Elemental and Isotopic Analysis in Bioarchaeological Research Contracts. In Investigations of Ancient Human Tissue, edited by Sandford, M. K., pp. 387412. Gordon and Breach, Langhorne, Pennsylvania. Google Scholar