Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-20T17:31:35.419Z Has data issue: false hasContentIssue false

Results of Instrument Neutron-Activation Trace-Element Analysis of Human Remains from the Naknek Region, Southwest Alaska

Published online by Cambridge University Press:  20 January 2017

R. K. Harritt
Affiliation:
National Park Service, 2525 Gambell St., Anchorage, AK 99503-2892
S. C. Radosevich
Affiliation:
Department of Anthropology, University of Oregon, Eugene, OR 97403

Abstract

An attempt to replicate results of a previous dietary trace-element study of northwestern Alaska (Connor and Slaughter 1984) was made with human- and animal-bone samples from the Naknek region, southwest Alaska. Trace elements of special interest are strontium and zinc because of previously postulated relation of abundances of these elements to marine and terrestrial dietary foci in human remains from archaeological sites (i.e., Nelson et al. 1986; Schoeninger and Peebles 1981). Related objectives were to develop evidence supporting Harritt's (1988) proposal for the existence of separate late prehistoric inland and coastal social and territorial entities in the region, which would be reflected as a dichotomy of trace levels in human bone; differences in abundances of strontium and zinc trace elements in bones representing each group should reflect diets based on either terrestrial fauna and plants or largely of marine sea mammals and shellfish. We find that there are no characteristic trace-element patterns for differentiating historic and late prehistoric coastal or interior inhabitants of the Alaska Peninsula, in spite of historic and archaeological evidence that indicates that such patterns should be present. This lack of patterning is traced to an erroneous assumption made initially by the present authors, and by Connor and Slaughter (1984): Because 99 percent of all digested Sr is deposited in the skeleton of vertebrates (including marine), there is no direct correlation between Sr content of human bones and the proportion of sea-mammal or teleost consumption in the prehistoric human diet.

Resumen

Resumen

Se intentó replicar los resultados de un estudio de dieta en el noroeste de Alaska mediante elementos-rastro (Connor and Slaughter 1984) utilizando muestras de huesos humanos y de animates provenientes de la región de Naknek, suroeste de Alaska. El estroncio y el zinc son elementos-rastro de especial interés, dadas las relaciones postuladas entre la abundancia de estos elementos y la orientación marina o terrestre de la dieta en restos humanos procedentes de sitios arqueológicos (i.e., Nelson et al. 1986; Schoeninger and Peebles 1981). Otro objetivofue el desarrollar la evidencia parafundamentar la propuesta de Harritt (1988) sobre la existencia de entidades sociales y territoriales separadas en la costa y tierra adentro durante los últimos períodos de la prehistoria. Tal situación se manifestaría como una dicotomía en los niveles de rastros en los huesos humanos; diferencias en la abundancia de estroncio y zinc en los huesos representatives de cada grupo deberían reflejar dietas basadas en fauna y plantas terrestres, oprincipalmente en mamíferos marinos y mariscos. Encontramos que no existenpatrones característicos de elementos-rastro que permitan diferenciar habitantes históricos o prehistóricos de la costa y del interior en la Penísula de Alaska, a pesar de la existencia de evidencias históricos y arqueológicos que indican que tales patrones deberían estar presentes. La ausencia de patrones se explica con referenda a un supuesto erróneo del que partieron los presentes autores, así como Connor y Slaughter (1984). Dado que 99 porciento de todo el estroncio digerido se deposita en el esqueleto de los vertebrados (incluyendo vertebrados marinos), no existe ninguna correlatión directa entre el contenido de Sr de los huesos humanos y la proporción de mamíferos marinos o teleosteos consumidos en la dieta humana prehistórica.

Type
Reports
Copyright
Copyright © Society for American Archaeology 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Beardsley, R. K., Holder, P., Krieger, A. D., Kutsche, P., Meggars, B. J., and Rinaldo, J. B. 1956 Functional and Evolutionary Implications of Community Patterning. In Seminars in Archaeology, edited by Wauchope, R., pp. 129157. Society for American Archaeology, Washington, D. C. Google Scholar
Beck, L. A. 1985 Bivariate Analysis of Trace Elements in Bone. Journal of Human Evolution 14 : 493502.CrossRefGoogle Scholar
Binford, L. R. 1980 Willow Smoke and Dog's Tails : Hunter-Gatherer Settlement Systems and Archaeological Site Formation. American Antiquity 45 : 420.Google Scholar
Brown, A. B. 1973 Bone Strontium Content as a Dietary Indicator in Human Skeletal Populations. Unpublished Ph. D. dissertation, Department of Anthropology, University of Michigan, Ann Arbor.Google Scholar
Comar, C. L. 1963 Some Overall Aspects of Strontium-Calcium Discrimination. In The Transfer of Calcium and Strontium Across Biological Membranes, edited by Wasserman, R. H., pp. 405418. Academic Press, New York.Google Scholar
Comar, C. L., and Wasserman, R. H. 1964 Strontium, in Mineral Metabolism, vol. 2, pt. A, edited by Comar, C. L. and Bronner, R., pp. 523572. Academic Press, New York.Google Scholar
Comar, C. L., Wasserman, R. H., Ulberg, S., and Andrews, G. A. 1957 Strontium Metabolism and Strontium/Calcium Discrimination in Man. Proceedings of the Society for Experimentation in Biology and Medicine 95 : 386391. Williams and Wilkins, Baltimore.Google Scholar
Connor, M., and Slaughter, D. 1984 Diachronic Study of Inuit Diets Utilizing Trace Element Analysis. Arctic Anthropology 21(1) : 123134.Google Scholar
Dumond, D. E. 1980 A Chronology of Native Alaskan Subsistence Systems. In Alaska Native Culture and History, edited by Kotani, Y. and Workman, W., pp. 2347. Senri Ethnological Series No. 4. National Museum of Ethnology, Osaka.Google Scholar
Dumond, D. E. 1981 Archaeology on the Alaska Peninsula : The Naknek Region, 1960-1975. Anthropological Papers No. 21. University of Oregon, Eugene.Google Scholar
Dumond, D. E. 1986 Demographic Effects of European Expansion : A Nineteenth Century Native Population on the Alaska Peninsula. Anthropological Papers No. 35. University of Oregon, Eugene.Google Scholar
Dumond, D. E. 1987 The Eskimos and Aleuts. Rev. ed. Thames and Hudson, London.Google Scholar
Giddings, J. L. 1961 Kobuk River People. Studies of Northern Peoples No. 1. University of Alaska, College.Google Scholar
Gilbert, R. 1975 Trace Element Analysis of Amerindian Populations at Dickson Mounds. Unpublished Ph. D. dissertation, Department of Anthropology, University of Massachusetts, Amherst.Google Scholar
Gorsuch, T. T. 1959 Radiochemical Investigations on the Recovery for Analysis of Trace Elements in Organic and Biological Materials. Analyst 84 : 135162.Google Scholar
Hancock, R. G. V., Grynpas, M. D., and Alpert, B. 1987 Are Archaeological Bones Similar to Modern Bones? An INAA Assessment. Journal ofRadioanalytical Nuclear Chemistry 110(1) : 283291.CrossRefGoogle Scholar
Harritt, R. K. 1988 The Late Prehistory of Brooks River, Alaska : A Model for Analysis of Occupations on the Alaska Peninsula. Anthropological Papers No. 38. University of Oregon, Eugene.Google Scholar
Holland, H. D. 1984 The Chemical Evolution of the Atmosphere and Oceans. Princeton University Press, Princeton.CrossRefGoogle Scholar
Kebata-Pendias, A., and Pendias, H. 1984 Trace Elements in Soils and Plants. CRC Press, Boca Raton, Florida.Google Scholar
Klepinger, L. L., Kuhn, J. K., and Williams, W. S. 1986 An Elemental Analysis of Archaeological Bone from Sicily as a Test of Predictability of Diagenetic Change. American Journal of Physical Anthropology 70 : 325331.Google Scholar
Koirtyohann, S. R., and Hopkins, C. A. 1976 Losses of Trace Metals During Ashing of Biological Materials. Analyst 101 : 870875.Google Scholar
Lambert, J. B., Szpurar, C. B., and Buikstra, J. E. 1979 Chemical Analysis of Excavated Human Bones from Middle and Late Woodland Sites. Archaeometry 21 : 115129.Google Scholar
Lambert, J. B., Vlasak, S. M., and Thometz, A. C. 1982 A Comparative Study of the Chemical Analysis of Ribs and Femurs in Woodland Populations. American Journal of Physical Anthropology 59 : 289294.Google Scholar
Lukacs, J., Retief, D. H., and Jarrige, J. F. 1985 Dental Disease in Prehistoric Baluchistan. National Geographic Research, Spring : 184197.Google Scholar
Nelson, E. W. 1983 The Eskimo About Bering Strait. (Improved Reprint of 1899 Bureau of Ethnology 18th Annual Report.) Smithsonian Institution Press, Washington, D. C. Google Scholar
Nelson, B. K., DeNiro, M. J., Schoeninger, M. J., DePaolo, D. J., and Hare, P. E. 1986 Effects of Diagenesis on Strontium, Carbon, Nitrogen, and Oxygen Concentrations and Isotopic Composition of Bone. Geochimica et Cosmochimica Acta 50 : 19411949.Google Scholar
Oswalt, W. 1967 Alaskan Eskimos. Chandler, San Francisco.Google Scholar
Pate, D., and Brown, K. A. 1985 The Stability of Bone Strontium in the Geochemical Environment. Journal of Human Evolution 14 : 483491.Google Scholar
Pate, F. D., and Hutton, J. T. 1988 The Use of Soil Chemistry Data to Address Post-Mortem Diagenesis in Bone Minerals. Journal of Archaeological Science 15 : 729739.Google Scholar
Pate, F. D., Hutton, J. T., and Norrish, K. 1989 Ionic Exchange between Soil Solution and Bone : Toward a Predictive Model. Applied Geochemistry 4 : 303316.Google Scholar
Radosevich, S. C. 1986 Final Report : Trace Element Analysis of Bones from Alaska and Pakistan. Ms. in possession of authors.Google Scholar
Radosevich, S. C. 1989a Diet or Diagenesis? : An Evaluation of the Trace Element Analysis of Bone. Unpublished Ph. D. dissertation, Department of Anthropology, University of Oregon, Eugene.Google Scholar
Radosevich, S. C. 1989b Geochemical Techniques Applied to Bone from South Asia and Alaska : Neither God's Truth or Hocus-pocus. Wisconsin Journal of Archaeology 2 : 93102.Google Scholar
Radosevich, S. C. 1992 The Six Deadly Sins of Trace Element Analysis = A Case of Wishful Thinking in Science. In Diet, Diagenesis and Disease : Chemical Analysis of Archaeological Human Tissues, edited by Sandford, M. K.. Gordon and Breach, New York, in press.Google Scholar
Retallack, G. J. 1985 Laboratory Exercises in Paleopedology. Erb Memorial Union Printing, University of Oregon, Eugene.Google Scholar
Rheingold, A. L., Hues, S., and Cohen, M. N. 1983 Strontium and Zinc Content in Bones as an Indication of Diet. Journal of Chemical Education 60 : 233234.CrossRefGoogle Scholar
Rosenthal, H. L. 1963 Uptake, Turnover, and Transport of Bone-Seeking Elements in Fishes. Annals of the New York Academy of Sciences 109 : 278293.Google Scholar
Rosenthal, H. L. 1981 Content of Stable Strontium in Man and Animal Biota. In Handbook of Stable Strontium, edited by Skoryna, C., pp. 503514. Plenum Press, New York.Google Scholar
Schoeninger, M. J. 1979 Diet and Status at Chalcatzingo : Some Empirical and Technical Aspects of Strontium Analysis. American Journal of Physical Anthropology 51 : 295310.Google Scholar
Schoeninger, M. J. 1980 Changes in Human Subsistence from Mid-Paleolithic to Neolithic Period in the Middle East. Unpublished Ph. D. dissertation, Department of Anthropology, University of Michigan, Ann Arbor.Google Scholar
Schoeninger, M. J. 1981 The Agricultural Revolution— Its Effects on Human Diet in Prehistoric Iran and Israel. Paleorient 7(1) : 7391.CrossRefGoogle Scholar
Schoeninger, M. J., and Peebles, S. 1981 Effects of Mollusc Eating on Human Bone Strontium Levels. Journal of Archaeological Science 8 : 391397.CrossRefGoogle Scholar
Schroeder, H. A., Tipton, I. H., and Wason, A. P. 1972 Trace Elements in Man : Strontium and Barium. Journal of Chronic Diseases 25 : 291517.Google Scholar
Sillen, A. 1981a Strontium and Diet at Hayonium Cave. American Journal of Physical Anthropology 56 : 131137. 198 lb Postdepositional Changes in Natufian and Aurignacian Bones from Hayonium Cave. Paleorient 7(2) : 81-86.CrossRefGoogle ScholarPubMed
Sillen, A. 1984 Dietary Changes in the Epi-Paleolithic and Neolithic of the Levant : The Sr/Ca Evidence. Paleorient 10(1) : 149155.Google Scholar
Sillen, A. 1986 Biogenic and Diagenic Sr/Ca in Plio-Pleistocene Fossils of the Omo Shungura Formation. Paleobiology 12 : 311323.Google Scholar
Sillen, A., and Kavanagh, M. 1982 Strontium and Paleodietary Research : A Review. Yearbook of Physical Anthropology 25 : 6790.Google Scholar
Sillen, A., Sealy, J. C., and Merwe, N. J. van der 1989 Chemistry and Paleodietary Research : No More Easy Answers. American Antiquity 54 : 504512.Google Scholar
Skoryna, C. (editor) 1981 Handbook of Stable Strontium. Plenum, New York.Google Scholar
Strohal, P., Lulic, S., and Jelisavcic, O. 1969 The Loss of Cerium, Cobalt, Manganese, Protactinium, Ruthenium, and Zinc During Dry Ashing of Biological Material. Analyst 94 : 678680.Google Scholar
Szpunar, C. B. 1977 Atomic Absorption Analysis of Archaeological Remains : Human Ribs from Woodland Mortuary Sites. Unpublished Ph. D. dissertation, Department of Anthropology, Northwestern University, Evanston.Google Scholar
Van Stone, J. 1984a Southwest Alaska Eskimo : Introduction. In Arctic, edited by Damas, D., pp. 205208. Handbook of North American Indians, vol. 5. W. G. Sturtevant, general editor. Smithsonian Institution, Washington, D. C. Google Scholar
Van Stone, J. 1984b Mainland Southwest Alaska Eskimo. In Arctic, edited by Damas, D., pp. 224242. Handbook of North American Indians, vol. 5. W. G. Sturtevant, general editor. Smithsonian Institution, Washington, D. C. Google Scholar
Woodbury, A. 1984 Eskimo and Aleut Languages. In Arctic, edited by Damas, D., pp. 4963. Handbook of North American Indians, vol. 5. W. G. Sturtevant, general editor. Smithsonian Institution, Washington, D. C. Google Scholar