Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-08T02:30:42.212Z Has data issue: false hasContentIssue false

Modeling Use-Life Distributions in Archaeology Using New Guinea Wola Ethnographic Data

Published online by Cambridge University Press:  20 January 2017

Michael J. Shott
Affiliation:
Dept. of Sociology, Anthropology & Criminology, University of Northern Iowa, Cedar Falls, IA 50614-0513 ([email protected])
Paul Sillitoe
Affiliation:
Dept. of Anthropology, University of Durham, 43 Old Elvet, Durham DH1 3HN, UK ([email protected])

Abstract

Assemblages are composed of proportions of artifacts by category. Use life affects the formation and therefore the size and composition of assemblages. Use life is to assemblage formation as lifespan is to demography, and demographers know that a population's mean lifespan is no more important than the distribution of values around that mean. When considered at all, use life typically is expressed as a mean value. But use-life's distribution—variation around the mean—affects assemblage composition independently of the mean. Distribution is neglected because its effects are not appreciated and seem difficult to measure. To improve understanding of assemblage formation, we study use-life distribution in New Guinea Wola ethnographic artifacts, using cumulative survivorship and the two-parameter Weibull model. Then we propose estimates of use-life distribution in Paleoindian stone tools. Knowing use-life distribution as well as mean, we know better how assemblages formed and improve our understanding of the archaeological record.

Resumen

Resumen

Los conjuntos arqueológicos constan de proporciones de artefactos por categoría. La vida útil influye en la formación y, por lo tanto, el tamaño y composición de los conjuntos. La vida útil se relaciona con la formación de conjuntos como la duración de vida se relaciona con la demografía, y los demógrafos saben que el tiempo promedio de vida no es más importante que la distribución de valores respecto a la media. Cuando se consideran, típicamente la vida útil se expresan como un valor promedio. Pero la distribución B variación de la vida util respecto a la media B afecta la composición de los conjuntos en forma independiente de la media. Los arqueólogos no prestan atención a la distribución, tal vez porque sus afectos no se aprecian y son difíciles de medir. Para lograr un mejor entendimiento de la formación de conjuntos arqueológicos, en este artículo se estudia la distribución de la vida útil calculada para categorías de artefactos o herramientas etnográficas Wola, de Nueva Guinea, con base en un modelo de supervivencia acumulativa y el modelo Weibull con dos parámetros. Además, se presentan cálculos de la distribución de la vida útil de especimenes arqueológicos paleoindios. Al conocer la distribución de la vida útil al igual que la media, se logra una mejor idea de cómo seforman los conjuntos y mejoramos nuestro entendimiento del registro arqueológico.

Type
Reports
Copyright
Copyright © The Society for American Archaeology 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Ahler, Stanley A. 1975 Extended Coalescent Lithic Technology: Supporting Data: Part II, Appendices K-O. Report on file, Midwest Archeological Center, National Park Service. Lincoln, Nebraska.Google Scholar
Aldenderfer, Mark S. 1981 Creating Assemblages by Computer Simulation: The Development and Uses of ABSIM. In Simulations in Archaeology, edited by Sabloff, Jeremy, pp. 67117. University of New Mexico Press, Albuquerque.Google Scholar
Ammerman, Albert J., and Feldman, Marcus 1974 On the ‘Making’ of an Assemblage of Stone Tools. American Antiquity 39:610616.Google Scholar
Binford, Lewis R. 1977 General Introduction. In For Theory Building in Archaeology: Essays on Faunal Remains, Aquatic Resources, Spatial Analysis, and Systemic Modeling, edited by Binford, Lewis, pp. 110. Academic, New York.Google Scholar
Callahan, Errett 1979 The Basics of Biface Knapping in the Eastern Fluted Point Tradition: A Manual for Flintknappers and Lithic Analysts. Archaeology of Eastern North America 7:1180.Google Scholar
Davis, Zachary J., and Shea, John J. 1998 Quantifying Lithic Curation: An Experimental Test of Dibble and Pelcin's Original Flake-tool Mass Predictor. Journal of Archaeological Science 25:603610.Google Scholar
Deal, Michael, and Hayden, Brian 1987 The Persistence of Pre-Columbian Lithic Technology in the Form of Glassworking. In Lithic Studies among the Contemporary Highland Maya, edited by Hayden, Brian, pp. 235331. University of Arizona Press, Tucson.Google Scholar
DeBoer, Warren R., and Lathrap, Donald W. 1979 The Making and Breaking of Shipibo-Conibo Ceramics. In Ethnoarchaeology: Implications of Ethnography for Archaeology, edited by Kramer, Carol, pp. 102138. Columbia University Press, New York.Google Scholar
De Guio, A. 1985 Archaeological Applications of Survival Analysis. In To Pattern the Past: Proceedings of the Symposium on Mathematical Methods in Archaeology, edited by Voorrips, Albertus and Loving, Susan, pp. 361381. PACT 11. Council of Europe, Strasbourg.Google Scholar
Dibble, Harold L. 1995 Middle Paleolithic Scraper Reduction: Background, Clarification, and Review of the Evidence to Date. Journal of Archaeological Method and Theory 4:299368.Google Scholar
Dibble, Harold L. and Pelcin, Andrew W. 1995 The Effect of Hammer Mass and Velocity on Flake Mass. Journal of Archaeological Science 22:429439.Google Scholar
Dibble, Harold L., and Shott, Michael J. 2003 Lithic Analysis: The Study of Stone Tools and Assemblages. Manuscript on file, Department of Sociology. Anthropology and Criminology, University of Northern Iowa, Cedar Falls, Iowa.Google Scholar
Dorner, William W. 1999 Using Microsoft Excel for Weibull Analysis. Quality Digest 19(1):3338.Google Scholar
Hatch, James W., Whittington, Stephen L., and Dyke, Bennett 1982 A Simulation Approach to the Measurement of Change in Ceramic Frequency Sériation. North American Archaeologist 3:333350.Google Scholar
Hayden, Brian 1987 Past to Present Uses of Stone Tools and Their Effects on Assemblage Characteristics in the Maya Highlands. In Lithic Studies among the Contemporary Highland Maya, edited by Hayden, Brian, pp. 160234. University of Arizona Press, Tucson.Google Scholar
Hildebrand, John A., and Hagstrum, Melissa B. 1999 New Approaches to Ceramic Use and Discard: Cooking Pottery from the Peruvian Andes in Ethnoarchaeological Perspective. Latin American Antiquity 10:2546.Google Scholar
Hiscock, Peter 1988 A Cache of Tulas from the Boulia District, Western Queensland. Archaeology in Oceania 23:6070.Google Scholar
Holdaway, Simon, and Fanning, Patricia 2003 Assemblage Accumulation as a Time Dependent Process in the Arid Zone of Western New South Wales, Australia. In Time in Archaeology: Time Perspectivism Twenty Years Later, edited by Holdaway, Simon and Wandsnider, LuAnn. Cambridge University Press, in press.Google Scholar
Kamminga, Johan 1982 Over the Edge: Functional Analysis of Australian Stone Tools. University of Queensland Occasional Papers in Anthropology No. 12. St. Lucia, Queensland, Australia.Google Scholar
Kurtz, Edwin B. 1930 Life Expectancy of Physical Property Based on Mortality Laws. Ronald, New York. Google Scholar
Lake, Mark W. 1999 MAGICAL Computer Simulation of Mesolithic Foraging. In Dynamics in Human and Primate Societies: Agent-Based Modeling of Social and Spatial Processes, edited by Kohler, Timothy and Gumerman, George, pp. 107143. Oxford University Press, New York.Google Scholar
Lee, Elisa T. 1992 Statistical Methods for Survival Analysis. 2nd ed. Wiley & Sons, New York.Google Scholar
Lekberg, Per 2000 The Lives and Lengths of Shaft-Hole Axes. In Form- Function-Context: Material Culture Studies in Scandina viari Archaeology, edited by Olausson, Deborah and Vandkilde, H., pp. 155161. Institute of Archaeology, Lund, Sweden.Google Scholar
McCool, John I. 1998 Inference on the Weibull Location Parameter. Journal of Quality Technology 30:119126.CrossRefGoogle Scholar
McCool, John I. 1999 Life Test Sample Size Selection Under a Weibull Failure Model. Society of Automotive Engineers, Technical Paper No. 1999-01-2860.Google Scholar
Morrow, Juliet E. 1996 The Organization of Early Paleoindian Lithic Technology in the Confluence Region of the Mississippi, Illinois, and Missouri Rivers. Unpublished Ph.D. dissertation, Department of Anthropology, Washington University, St. Louis.Google Scholar
Orton, Clive 1980 Mathematics in Archaeology. Cambridge University Press, Cambridge.Google Scholar
Parker, William C., and Arnold, Anthony J. 1997 Species Survivorship in Cenozoic Planktonic Foraminifera: A Test of Exponential and Weibull Models. Palaios 12:312.Google Scholar
Pearl, Raymond, and John R., Miner 1935 Experimental Studies on the Duration of Life, XIV: The Comparative Mortality of Certain Lower Organisms. Quarterly Review of Biology 10:6079.Google Scholar
Roff, Derek A. 1992 The Evolution of Life Histories: Theory and Analysis. Chapman and Hall, New York.Google Scholar
Schiffer, Michael B. 1975 The Effects of Occupation Span on Site Content. In The Cache River Archeological Project: An Experiment in Contract Archeology, edited by Schiffer, Michael and House, John, pp. 265269. Arkansas Archeological Survey Research Series No. 8. Fayetteville, Arkansas.Google Scholar
Schiffer, Michael B. 1987 Formation Processes of the Archaeological Record. University of New Mexico Press, Albuquerque. Google Scholar
Shott, Michael J. 1989 On Tool Class Use Lives and the Formation of Archaeological Assemblages. American Antiquity 54:930.Google Scholar
Amsden, Diana 1996a Mortal Pots: On Use Life and Vessel Size in the Formation of Ceramic Assemblages. American Antiquity 61:463482.Google Scholar
Amsden, Diana 1996b An Exegesis of the Curation Concept. Journal of Anthropological Research 52:259280.Google Scholar
Shott, Michael J. 1997 Activity and Formation as Sources of Variation in Great Lakes Paleoindian Assemblages. Midcontinental Journal of Archaeology 22:197236.Google Scholar
Shott, Michael J. 1998 Status and Role of Formation Theory in Contemporary Archaeological Practice. Journal of Archaeological Research 6:299329.Google Scholar
Shott, Michael J. 2002 Weibull Estimation of Use-Life Distribution in Experimental Spear-Point Data. Lithic Technology 27:93110.Google Scholar
Shott, Michael J., Bradbury, Andrew, Carr, Philip, and Odell, George 2000 Flake Size from Platform Attributes: Predictive and Empirical Approaches. Journal of Archaeological Science 27:877894.Google Scholar
Shott, Michael J., and Sillitoe, Paul 2001 The Mortality of Things: Correlates of Use-Life in Wola Material Culture Using Age-at-Census Data. Journal of Archaeological Method and Theory 8:269302.Google Scholar
Shott, Michael J., and Sillitoe, Paul 2003 Wola Use Life Data and Analysis. Unpublished manuscript on file, Department of Sociology, Anthropology and Criminology, University of Northern Iowa. Cedar Falls, Iowa.Google Scholar
Sillitoe, Paul 1979 Give and Take: Exchange in Wola Society. Australian National University Press, Canberra.Google Scholar
Sillitoe, Paul 1988 Made in Niugini: Technology in the Highlands of Papua New Guinea. British Museum Press, London. Google Scholar
Skibo, James M. 1992 Pottery Function: A Use-Alteration Perspective. Plenum, New York. Google Scholar
Varien, Mark D., and Mills, Barbara J. 1997 Accumulations Research: Problems and Prospects for Estimating Site Occupation Span. Journal of Archaeological Method and Theory 4:141191.Google Scholar
Varien, Mark D., and Potter, James M. 1997 Unpacking the Discard Equation: Simulating the Accumulation of Artifacts in the Archaeological Record. American Antiquity 62:194213.CrossRefGoogle Scholar
Vincent, Anne S. 1985 Wild Tubers as a Harvestable Resource in the East African Savannas: Ecological and Ethnographic Studies. Unpublished Ph.D. dissertation, Department of Anthropology, University of California, Berkeley.Google Scholar