Article contents
An artificial neural network approach to discrete-event simulation
Published online by Cambridge University Press: 27 February 2009
Abstract
This paper proposes and evaluates a neural network-based method for simulating manufacturing processes that exhibit both noncontinuous and stochastic behavior processes more conventionally modeled, using discrete-event simulation algorithms. The incentive for developing the technique is its potential for rapid execution of a simulation through parallel processing, and facilitation of the development and improvement of models particularly where there is limited theory describing the dependence between component processes. A brief introduction is provided to a radial-Gaussian neural network architecture and training process, the system adopted for the work presented in this paper. A description of the basic approach proposed for applying this technology to simulation is then described. This involves the use of a modularized neural network approach to model construction and the prediction of the occurrence of events using information retained from several previous states of the simulation. A class of earth-moving systems, comprising a push-dozer and a fleet of scrapers, is used as the basis for assessing the viability and performance of the proposed approach. A series of experiments show the neural network to be capable of both capturing the characteristic behavior and making an accurate prediction of production rates of scraper-based earth-moving systems. The paper concludes with an indication of some areas for further development and evaluation of the technique.
- Type
- Articles
- Information
- Copyright
- Copyright © Cambridge University Press 1995
References
REFERENCES
- 6
- Cited by