Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T10:02:26.327Z Has data issue: false hasContentIssue false

Solving the tool switching problem with memetic algorithms

Published online by Cambridge University Press:  24 October 2011

Jhon Edgar Amaya
Affiliation:
Laboratorio de Computación de Alto Rendimiento, Universidad Nacional Experimental del Táchira, San Cristóbal, Venezuela
Carlos Cotta*
Affiliation:
Departamento Lenguajes y Ciencias de la Computación, ETSI Informática, University of Málaga, Campus de Teatinos, Málaga, Spain
Antonio J. Fernández-Leiva
Affiliation:
Departamento Lenguajes y Ciencias de la Computación, ETSI Informática, University of Málaga, Campus de Teatinos, Málaga, Spain
*
Reprint requests to: Carlos Cotta, Departamento Lenguajes y Ciencias de la Computación, ETSI Informática, University of Málaga, Campus de Teatinos, 29071, Málaga, Spain. E-mail: [email protected]

Abstract

The tool switching problem (ToSP) is well known in the domain of flexible manufacturing systems. Given a reconfigurable machine, the ToSP amounts to scheduling a collection of jobs on this machine (each of them requiring a different set of tools to be completed), as well as the tools to be loaded/unloaded at each step to process these jobs, such that the total number of tool switches is minimized. Different exact and heuristic methods have been defined to deal with this problem. In this work, we focus on memetic approaches to this problem. To this end, we have considered a number of variants of three different local search techniques (hill climbing, tabu search, and simulated annealing), and embedded them in a permutational evolutionary algorithm. It is shown that the memetic algorithm endowed with steepest ascent hill climbing search yields the best results, performing synergistically better than its stand-alone constituents, and providing better results than the rest of the algorithms (including those returned by an effective ad hoc beam search heuristic defined in the literature for this problem).

Type
Practicum Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al-Fawzan, M., & Al-Sultan, K. (2003). A tabu search based algorithm for minimizing the number of tool switches on a flexible machine. Computers & Industrial Engineering 44(1), 3547.CrossRefGoogle Scholar
Amaya, J., Cotta, C., & Fernández, A. (2008). A memetic algorithm for the tool switching problem. In Hybrid Metaheuristics 2008 (Blesa, M., Blum, C., Cotta, C., Fernández Leiva, A.J., Gallardo Ruiz, J.E., Roli, A., & Sampels, M., Eds.), LNCS, Vol. 5296, pp. 190202. Málaga: Springer–Verlag.CrossRefGoogle Scholar
Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice. New York: Oxford University Press.CrossRefGoogle Scholar
Bard, J.F. (1988). A heuristic for minimizing the number of tool switches on a flexible machine. IIE Transactions 20(4), 382391.CrossRefGoogle Scholar
Belady, L. (1966). A study of replacement algorithms for virtual storage computers. IBM Systems Journal 5, 78101.CrossRefGoogle Scholar
Błażewicz, J., & Finke, G. (1994). Scheduling with resource management in manufacturing systems. European Journal of Operational Research 76, 114.CrossRefGoogle Scholar
Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Computing Surveys 35(3), 268308.CrossRefGoogle Scholar
Cotta, C., & Fernández, A. (2007). Memetic algorithms in planning, scheduling and timetabling. In Evolutionary Scheduling (Dahal, K., Tan, K.-C., & Cowling, P., Eds.), pp. 130. Berlin: Springer–Verlag.Google Scholar
Cotta, C., & Troya, J. (1998). Genetic forma recombination in permutation flowshop problems. Evolutionary Computation 6(1), 2544.CrossRefGoogle ScholarPubMed
Cotta, C., & Troya, J. (2003). Embedding branch and bound within evolutionary algorithms. Applied Intelligence 18(2), 137153.CrossRefGoogle Scholar
Crama, Y., Kolen, A., Oerlemans, A., & Spieksma, F. (1994). Minimizing the number of tool switches on a flexible machine. International Journal of Flexible Manufacturing Systems 6, 3354.CrossRefGoogle Scholar
Crama, Y., Moonen, L., Spieksma, F., & Talloen, E. (2007). The tool switching problem revisited. European Journal of Operational Research 182(2), 952957.CrossRefGoogle Scholar
Dawkins, R. (1976). The Selfish Gene. Oxford: Clarendon Press.Google Scholar
Diekmann, R., Lüling, R., & Simon, J. (1993). Problem independent distributed simulated annealing and its applications. In Applied Simulated Annealing (Vidal, R., Ed.), LNEMS, Vol. 3962, pp. 1744. Berlin: Springer–Verlag.CrossRefGoogle Scholar
ElMaraghy, H. (1985). Automated tool management in flexible manufacturing. Journal of Manufacturing Systems 4(1), 114.CrossRefGoogle Scholar
Elmohamed, M.A.S., Coddington, P.D., & Fox, G. (1998). A comparison of annealing techniques for academic course scheduling. In Practice and Theory of Automated Timetabling II (Burke, E., & Carter, M., Eds.), LCS, Vol. 1498, pp. 92112. Berlin: Springer–Verlag.CrossRefGoogle Scholar
Fischetti, M., & Lodi, A. (2003). Local branching. Mathematical Programming B 98, 2347.CrossRefGoogle Scholar
Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association 32(200), 675701.CrossRefGoogle Scholar
Gallardo, J., Cotta, C., & Fernández, A. (2007). On the hybridization of memetic algorithms with branch-and-bound techniques. IEEE Transactions on Systems, Man, and Cybernetics, Part B 37(1), 7783.CrossRefGoogle ScholarPubMed
Ghiani, G., Grieco, A., & Guerriero, E. (2007). An exact solution to the TLP problem in an NC machine. Robotics and Computer-Integrated Manufacturing 23(6), 645649.CrossRefGoogle Scholar
Glover, F. (1989 a). Tabu search—part I. ORSA Journal of Computing 1(3), 190206.CrossRefGoogle Scholar
Glover, F. (1989 b). Tabu search—part II. ORSA Journal of Computing 2(1), 431.CrossRefGoogle Scholar
Hertz, A., Laporte, G., Mittaz, M., & Stecke, K. (1998). Heuristics for minimizing tool switches when scheduling part types on a flexible machine. IIE Transactions 30, 689694.CrossRefGoogle Scholar
Hertz, A., & Widmer, M. (1993). An improved tabu search approach for solving the job shop scheduling problem with tooling constraints. Discrete Applied Mathematics 65, 319345.CrossRefGoogle Scholar
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6, 6570.Google Scholar
Hong-Bae, J., Yeong-Dae, K., & Suh, S.H.-W. (1999). Heuristics for a tool provisioning problem in a flexible manufacturing system with an automatic tool transporter. IEEE Transactions on Robotics and Automation 15(3), 488496.CrossRefGoogle Scholar
Hop, N.V. (2005). The tool-switching problem with magazine capacity and tool size constraints. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans 38(5), 617628.Google Scholar
Houck, C., Joines, J., Kay, M., & Wilson, J. (1997). Empirical investigation of the benefits of partial Lamarckianism. Evolutionary Computation 5(1), 3160.CrossRefGoogle ScholarPubMed
Huang, M., Romeo, F., & Sangiovanni-Vincentelli, A. (1986). An efficient general cooling schedule for simulated annealing. Proc. 1986 IEEE Int. Conf. Computer Aided Design (ICCAD), pp. 381384. Santa Clara, CA: IEEE Press.Google Scholar
Iman, R., & Davenport, J. (1980). Approximations of the critical region of the Friedman statistic. Communications in Statistics 9, 571595.CrossRefGoogle Scholar
Jones, T. (1995). Evolutionary algorithms, fitness landscapes and search. PhD Thesis. University of New Mexico.Google Scholar
Kashyap, A., & Khator, S. (1994). Modeling of a tool shared flexible manufacturing system. Proc. 26th Simulation Conf. Int. Society for Computer Simulation, pp. 986993, San Diego, CA.CrossRefGoogle Scholar
Keung, K.W., Ip, W.H., & Lee, T.C. (2001). A genetic algorithm approach to the multiple machine tool selection problem. Journal of Intelligent Manufacturing 12(4), 331342.CrossRefGoogle Scholar
Kiran, A., & Krason, R. (1988). Automated tooling in a flexible manufacturing system. Industrial Engineering 20, 5257.Google Scholar
Kirkpatrick, S., Gelatt, C.D., & Vecchi, M.P. (1983). Optimization by simulated annealing. Science 4598, 671680.CrossRefGoogle Scholar
Krasnogor, N., & Smith, J. (2005). A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Transactions on Evolutionary Computation 9(5), 474488.CrossRefGoogle Scholar
Laporte, G., Salazar-González, J., & Semet, F. (2004). Exact algorithms for the job sequencing and tool switching problem. IIE Transactions 36(1), 3745.CrossRefGoogle Scholar
Larrañaga, P., Kuijpers, C., Murga, R., Inza, I., & Dizdarevic, S. (1999). Genetic algorithms for the travelling salesman problem: a review of representations and operators. Artificial Intelligence Review 13, 129170.CrossRefGoogle Scholar
Lehmann, E., & D'Abrera, H. (1998). Nonparametrics: Statistical Methods Based on Ranks. Englewood Cliffs, NJ: Prentice–Hall.Google Scholar
Maheswaran, R., Ponnambalam, S., & Aranvidan, C. (2005). A meta-heuristic approach to single machine scheduling problems. International Journal of Advanced Manufacturing Technology 25, 772776.CrossRefGoogle Scholar
Moscato, P. (1989). On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms, Caltech Concurrent Computation Program Technical Report 826. Pasadena, CA: California Institute of Technology.Google Scholar
Moscato, P., & Cotta, C. (2003). A gentle introduction to memetic algorithms. In Handbook of Metaheuristics (Glover, F.W., & Kochenberger, G.A., Eds.), pp. 105144. Boston: Kluwer Academic.CrossRefGoogle Scholar
Moscato, P., & Cotta, C. (2007). Memetic algorithms. In Handbook of Approximation Algorithms and Metaheuristics (González, T., Ed.), Chap. 27. New York: Chapman & Hall/CRC Press.Google Scholar
Moscato, P., & Cotta, C. (2010). A modern introduction to memetic algorithms. In Handbook of Metaheuristics (Gendrau, M., & Potvin, J.-Y., Eds.), Vol. 146, 2nd ed., pp. 141183. New York: Springer–Verlag.CrossRefGoogle Scholar
Nguyen, Q.H., Ong, Y.-S., & Krasnogor, N. (2007). A study on the design issues of memetic algorithm. Proc. 2007 IEEE Congress on Evolutionary Computation (Srinivasan, D., & Wang, L., Eds.), pp. 23902397. Singapore: IEEE Press.CrossRefGoogle Scholar
Oerlemans, A. (1992). Production planning for flexible manufacturing systems. PhD Thesis. University of Limburg. Maastricht.Google Scholar
Oliver, I., Smith, D., & Holland, J. (1987). A study of permutation crossover operators on the traveling salesman problem. Proc. 2nd Int. Conf. Genetic Algorithms (Grefenstette, J., Ed.), pp. 224230. Hillsdale, NJ: Erlbaum.Google Scholar
Otten, R., & van Ginneken, L. (1989). The Annealing Algorithm. New York: Kluwer Academic.CrossRefGoogle Scholar
Privault, C., & Finke, G. (1995). Modelling a tool switching problem on a single NC-machine. Journal of Intelligent Manufacturing 6(2), 8794.CrossRefGoogle Scholar
Prügel-Bennett, A. (2010). Benefits of a population: five mechanisms that advantage population-based algorithms. IEEE Transactions on Evolutionary Computation 14(4), 500517.CrossRefGoogle Scholar
Reeves, C. (1994). Genetic algorithms and neighbourhood search. In Evolutionary Computing (Fogarty, T., Ed.), LNCS, Vol. 865, pp. 115130. Berlin: Springer–Verlag.CrossRefGoogle Scholar
Shirazi, R., & Frizelle, G. (2001). Minimizing the number of tool switches on a flexible machine: an empirical study. International Journal of Production Research 39(15), 35473560.CrossRefGoogle Scholar
Starkweather, T., McDaniel, S., Mathias, K., Whitley, D., & Whitley, C. (1991). A comparison of genetic sequencing operators. Proc. 4th Int. Conf. Genetic Algorithms (Belew, R., & Booker, L., Eds.), pp. 6976. San Mateo CA: Morgan Kauffman.Google Scholar
Sudholt, D. (2009). The impact of parametrization in memetic evolutionary algorithms. Theoretical Computer Science 410(26), 25112528.CrossRefGoogle Scholar
Tang, C., & Denardo, E. (1988). Models arising from a flexible manufacturing machine, part I: minimization of the number of tool switches. Operations Research 36(5), 767777.CrossRefGoogle Scholar
Tzur, M., & Altman, A. (2004). Minimization of tool switches for a flexible manufacturing machine with slot assignment of different tool sizes. IIE Transactions 36(2), 95110.CrossRefGoogle Scholar
Zhou, B.-H., Xi, L.-F., & Cao, Y.-S. (2005). A beam-search-based algorithm for the tool switching problem on a flexible machine. International Journal of Advanced Manufacturing Technology 25(9–10), 876882.CrossRefGoogle Scholar