Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T17:58:06.935Z Has data issue: false hasContentIssue false

Sketch-based interfaces for modeling and users' needs: Redefining connections

Published online by Cambridge University Press:  14 August 2012

Catherine Elsen*
Affiliation:
LUCID, University of Liège, Liège, Belgium Department of Mechanical Engineering and Engineering Systems Division, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
Jean-Noël Demaret
Affiliation:
LUCID, University of Liège, Liège, Belgium
Maria C. Yang
Affiliation:
Department of Mechanical Engineering and Engineering Systems Division, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
Pierre Leclercq
Affiliation:
LUCID, University of Liège, Liège, Belgium
*
Reprint requests to: Elsen Catherine, LUCID, University of Liège, Chemin des Chevreuils 1, Bat. B52/3, Liège 4000, Belgium. E-mail: [email protected]

Abstract

The goal of this paper is to reexamine assumptions about sketch-based interfaces for modeling in the context of designers' needs and practices. Research questions examine (a) the type of sketch support and (b) the timing of support. Both concepts try to determine when, what, why and how to augment design processes in a way that is useful to designers. Two experiments (one in architecture and one in product design) based on ergonomics theory are conducted and intend to question some of these assumptions. The Port Zeeland experiment examines how 20 novices perceive and copy a blurred architectural sketch, which provides clues for a sketch interpretation system. The “Tragere” experiment studies how 12 professional product designers, some of whom are “idea generators” and others “idea pursuers,” perceive, recognize, and handle a design sketch. The results take a designer's point of view in assessing the timing and value of sketch assistance in product design. The quantitative data analysis provides rich clues about when, why and how product sketches should be supported. The paper explores the strategies developed by designers to perceive and recognize graphical content and discusses the generation of three-dimensional volumes, the univocity state between sketches and three-dimensional models, and the treatment of features in freehand sketches. The paper concludes with observations on the timing and value of support, as first integrated in NEMo, a tool for early stage architectural design, and then in PEPS3, an early stage framework for product design.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alvarado, C., & Davis, R. (2004). SketchREAD: a multi-domain sketch recognition engine. Proc. 17th Annual ACM Symp. User Interface Software and Technology (UIST 2004), pp. 23–32.Google Scholar
Achten, H., Dorst, K., Stappers, P.J., & De Vries, B. (2005). A decade of design research in the Netherlands. Design Research in the Netherlands Symp.Google Scholar
Achten, H., Vries, B., & Jessurun, A. (2000). DDDoolz-a virtual reality sketch tool for early design. CAADRIA 2000: Proc. 5th Conf. Computer Aided Architectural Design Research in Asia, Singapore (Tan, B.-K., Tan, M., & Wong, Y.-C., Eds.), Centre for Advanced Studies in Architecture, pp. 451–460.CrossRefGoogle Scholar
Alvarado, C. (2004). Multi-domain sketch understanding. PhD Thesis. Massachusetts Institute of Technology.Google Scholar
Alvarado, C., & Davis, R. (2004). SketchREAD: A Multi-Domain Sketch Recognition Engine. Proc. 17th Annual ACM Symp. User Iterface Software and Technology (UIST 2004), pp. 23–32.Google Scholar
Aoyama, H., Nordgren, A., Yamaguchi, H., Komatsu, Y., & Ohno, M. (2007). Digital style design systems from concept to sophisticated shape. International Journal on Interactive Design and Manufacturing 1, 5565.CrossRefGoogle Scholar
Bae, S.-H., Balakrishnan, R., & Singh, K. (2008). ILoveSketch: as-natural-as-possible sketching system for creating 3-D curve models. Proc. 21st Annual ACM Symp. User Interface Software and Technology, Monterey, CA.CrossRefGoogle Scholar
Basa, I., & Senyapili, B. (2005). The (in)secure position of the design jury towards computer generated presentations. Design Studies 26, 257270.CrossRefGoogle Scholar
Bastien, J., & Scapin, D. (1995). Evaluating a user interface with ergonomic criteria. International Journal of Human–Computer Interaction 7, 105121.CrossRefGoogle Scholar
Bilda, Z., & Gero, J. (2005). Does sketching off-load visuo-spatial working memory? In Studying Designers ‘05 (Gero, J., & Bonnardel, N., Eds.). Sydney: University of Sidney, Key Centre of Design Computing and Cognition.Google Scholar
Casella, G., Deufemia, V., Mascardi, V., Costagliola, G., & Martelli, M. (2008). An agent-based framework for sketched symbol interpretation. Journal of Visual Languages and Computing 19, 225257.Google Scholar
Casella, G., Deufemia, V., Mascardi, V., Martelli, M., & Tortora, G. (2008). Resoning about hand-drawn sketches: an approach based on intelligent software agents. Proc. 10th Int. Conf. Visual Information Systems (VISUAL 2008), pp. 302314.Google Scholar
Company, P., Piquer, A., & Contero, M. (2004). On the evolution of geometrical reconstruction as a core technology to sketch-based modeling. Eurographics Proc. Workshop on Sketch-Based Interfaces and Modeling (Hughes, J., & Jorge, J., Eds.), pp. 97106. Eurographics Association.Google Scholar
Cross, N. (2000). Strategies for Product Design (3rd ed.). Milton Keynes: Open University.Google Scholar
Danesi, F., Gardan, Y., Martin, B., & Pecci, I. (1999). L'esquisse, définition et utilisation en conception 3D. Accessed at http://www.valoria-univ-ubs.frGoogle Scholar
Darses, F. (2004). Processus psychologiques de résolution collective des problèmes de conception: contribution de la psychologie ergonomique. Document de synthèse en vue d'obtenir une Habilitation à Diriger des Recherches. Paris: Université Paris V–René Descartes.Google Scholar
Darses, F., Détienne, F., & Visser, W. (2001). Assister la conception: perspectives pour la psychologie cognitive ergonomique. Epique 2001—Journées d’étude en Psychologie ergonomique, Nantes, France.Google Scholar
Darses, F., Mayeur, A., Elsen, C., & Leclercq, P. (2008). Is there anything to expect from 3D views in sketching support tools? Design Computing and Cognition: Proc. 3rd Int. Conf. Design Computing and Cognition (Gero, J., & Goel, A., Eds.). Atlanta, GA: Springer.Google Scholar
Davis, R. (2002). Sketch understanding in design: overview of work at the MIT AI Lab. AAAI Spring Symp., AAAI Technical Support.Google Scholar
Demeure, A. (2007). Modèles et outils pour la conception et l'exécution d'Interfaces Homme-Machine Plastiques. PhD Thesis. Université Joseph Fourier.Google Scholar
Dessy, J. (2002). De l'emploi des symboles dans les esquisses architecturales, Université de Liège.Google Scholar
Détienne, F., Boujut, J., & Hohmann, B. (2004). Characterization of collaborative design and interaction management activities in a distant engineering design situation. In Cooperative Systems Design: Scenario-Based Design of Collaborative Systems (Darses, F., Dieng, R., Simone, C., & Zacklad, M., Eds.). New York: IOS Press.Google Scholar
Do, E. (1995). What's in a diagram that a computer should understand. CAAD Futures ‘05, 1995 Singapour, pp. 469482.Google Scholar
Do, E., & Gross, M. (1997). Inferring design intentions from sketches: an investigation of freehand drawing conventions in design. CAADRIA 1997, pp. 217227, National Chioa Tung University.CrossRefGoogle Scholar
Do, E. Y. (2001). VR sketchpad. CAAD Futures 2001, pp. 161172, Eindhoven.Google Scholar
Dorst, K. (2008). Design research: a revolution-waiting-to-happen. Design Studies 29, pp. 411.Google Scholar
Eggli, L., Brüderlin, B., & Elber, G. (1995). Sketching as a solid modeling tool. Proc. 3rd ACM Symp. Solid Modeling and Applications. Salt Lake City, UT: ACM.Google Scholar
Elsen, C., Darses, F., & Leclercq, P. (2010). An anthropo-based standpoint on mediating objects: evolution and extension on industrial design practices. Design Computing and Cognition (Gero, J., Ed.). Stuttgart: Springer.Google Scholar
Ferguson, E. (1992). Engineering and the Mind's Eye. Cambridge, MA: MIT Press.Google Scholar
Garner, S. (2000). Is sketching still relevant in virtual design studios? DCNet Conf., pp. 16.Google Scholar
Gennari, L., Kara, L., & Stahovich, T. (2004). Combining geometry and domain knowledge to interpret hand-drawn diagrams. AAAI Fall Symp. Series 2004: Making Pen-Based Interaction Intelligent and Natural.Google Scholar
Goel, V. (1995). Sketches of Thought. Cambridge, MA: MIT Press.Google Scholar
Hammond, T., & Davis, R. (2005). LADDER, a sketching language for user interface developers. Computers & Graphics 29, 518532.CrossRefGoogle Scholar
Huot, S. (2005). Une nouvelle approche pour la conception créative: de l'interprétation du dessin à main levée au prototypage d'interactions non-standard. PhD Thesis. Ecole Nationale Supérieure des Techniques industrielles et des Mines de Nantes.Google Scholar
Igarashi, T., Matsuoka, S., & Tanaka, H. (2007). Teddy: a sketching interface for 3D freeform design. ACM SIGGRAPH 2007 Courses. San Diego, CA: ACM.Google Scholar
Jeunejean, A. (2004). Algorithme de tracé réaliste pour environnement de dessin virtuel. Master's Thesis. Université de Liège.Google Scholar
Jonson, B. (2005). Design ideation: the conceptual sketch in the digital age. Design Studies 26, 613624.Google Scholar
Jozen, T., Wang, L., & Sasada, T. (1999). Sketch VRML-3D modeling of conception. Architectural Computing: From Turing to 2000, pp. 557563.Google Scholar
Juchmes, R. (2005). Etude comparative des techniques temp réel d'interprétation de croquis. Diplôme d'Etudes Approfondies. Université de Liège.Google Scholar
Juchmes, R., Leclercq, P., & Sleiman, A. (2005). A freehand-sketch environment for architectural design supported by a multi-agent system. Computers & Graphics 29(6), 905915.CrossRefGoogle Scholar
Kanai, S. (2005). Human-computer interactions for digital styling design—a difficult road toward bridging the gap between concepts and 3D models. Proc. Virtual Concept 2005, Biarritz.Google Scholar
Kara, L., Shimada, K., & Marmalefsky, S.D. (2007). An evaluation of user experience with a sketch-based 3D modeling system. Computer & Graphics 31, 580597.CrossRefGoogle Scholar
Karpenko, O., Hughes, J., & Raskar, R. (2004). Epipolar methods for multi-view sketching. Eurographics Workshop in Sketch-Based Interfaces and Modeling.Google Scholar
Kolarevic, B. (2000). Digital architectures. Proc. ACADIA 2000: Eternity, Infinity and Virtuality, pp. 251256 (Clayton, M.-J., & Vasquez De Velasco, G.-P., Eds.). New York: Virtualbookworm.com Publishing.Google Scholar
Lebahar, J. (2007). La conception en design industriel et en architecture: Désir, pertinence, coopération et cognition. Paris: Lavoisier.Google Scholar
Leclercq, P. (1994). Environnement de conception architecturale préintégrée. Elements d'une plate-forme d'assistance basée sur une représentation sémantique. PhD Thesis. University of Liège.Google Scholar
Leclercq, P. (2005). Le concept d'esquisse augmentée. Proc. SCAN 2005, Séminaire de Conception Architecturale Numérique.Google Scholar
Lim, C. (2003). An insight into the freedom of using a pen: pen-based system and pen-and-paper. 22nd ACADIA Conf.: Connecting Crossroads of Digital Discourse.Google Scholar
Lipson, H., & Shpitalni, M. (1996). Optimization-based reconstruction of a 3D object from a single freehand line drawing. Computer-Aided Design 28, 651663.CrossRefGoogle Scholar
Lipson, H., & Shpitalni, M. (2007). Correlation-based reconstruction of a 3D object from a single freehand sketch. SIGGRAPH 2007.CrossRefGoogle Scholar
Macé, S., & Anquetil, E. (2009). Eager interpretation of on-line hand-drawn structured documents: the DALI methodology. Pattern Recognition 42, 32023214.Google Scholar
Mcgown, A., Green, G., & Rodgers, P.A. (1998). Visible ideas: information patterns of conceptual sketch activity. Design Studies 19, pp. 431453.CrossRefGoogle Scholar
Mitchell, M. (2001). Analogy-making as a complex adaptive system. In Design Principles for the Immune System and Other Distributed Autonomous Systems (Segel, L.A., & Cohen, I.R., Eds.), pp. 335360.Google Scholar
Nijs, G., Vermeersch, P., Devlieger, P., & Heylighen, A. (2010). Extending the dialogue between design(ers) and disabled use(rs): from conversation to embodied skill. Int. Design Conf., Design 2010, pp. 18171826, Dubrovnik.Google Scholar
Olsen, L., Samavati, F.F., Sousa, M.C. & Jorge, J.A. (2009). Sketch-based modeling: a survey. Computers & Graphics 33, 85103.Google Scholar
Peterson, E.J., Stahovich, T.F., Doi, E., & Alvarado, C. (2010). Grouping strokes into shapes in hand-drawn diagrams. Twenty-Fourth AAAI Conf. Artificial Intelligence (AAAI-10), pp. 974979.Google Scholar
Plimmer, B., & Freeman, I. (2007). A Toolkit approach to sketched diagram recognition. BCS HCI 2007, pp. 205213.CrossRefGoogle Scholar
Ramel, J.-Y., Vincent, N., & Emptoz, H. (1998). Interprétation de documents techniques par “cycles perceptifs” à partir d'une perception globale du document. Revue Traitement du Signal 15(2), 120.Google Scholar
Rajan, P., & Hammond, T. (2008). From paper to machine: extracting stokes from images for use in sketch recognition. Proc. 5th Eurographics Workshop on Sketch-Based Interfaces and Modeling (SBIM’08), pp. 4148.Google Scholar
Robertson, B.F., & Radcliffe, D.F. (2009). Impact of CAD tools on creative problem solving in engineering design. Computer-Aided Design 41, 136146.Google Scholar
Rodgers, P.A., Green, G., & Mcgown, A. (2000). Using concept sketches to track design progress. Design Studies 21, 451464.Google Scholar
Safin, S., Boulanger, C., & Leclercq, P. (2005). Premières évaluations d'un bureau virtuel pour un processus de conception augmenté. IHM 2005, pp. 107114.Google Scholar
Safin, S., Juchmes, R., & Leclercq, P. (in press). Du crayon au stylo numérique: influences des IHM à stylo et des interprétations numériques sur l'activité graphique en tâches de conception. Journal d'Interaction Personne-Système.Google Scholar
Saund, E. (2003). Finding perceptually closed paths in sketches and drawings. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 475491.Google Scholar
Saund, E., & Moran, T. (1994). A perceptually-supported sketch editor. Proc. 7th Annual ACM Symp. User Interface Software and Technology. Marina del Rey, CA: ACM.Google Scholar
Schenk, P. (1991). The role of drawing in the graphic design process. Design Studies 12, 168181.CrossRefGoogle Scholar
Schon, D.A., & Wiggins, G. (1992). Kinds of seeing and their functions in designing. Design Studies 13, 135156.Google Scholar
Shilman, M., & Viola, P. (2004). Spatial recognition and grouping of text and graphics. Eurographics Workshop on Sketch-Based Interfaces and Modeling, pp. 9195.Google Scholar
Sutherland, I. (1963). SketchPad: a man–machine graphical communication system. Spring Joint Computer Conf., pp. 329345.CrossRefGoogle Scholar
Suwa, M., Purcell, T., & Gero, J. (1998). Macroscopic analysis of design processes based on a scheme for coding designers’ cognitive actions. Design Studies 19, 455483.Google Scholar
Tian, C., Masry, M., & Lipson, H. (2009). Physical sketching: reconstruction and analysis of 3D objects from freehand sketches. Computer-Aided Design 41, 147158.Google Scholar
Tovey, M., & Richards, C. (2004). Computer representation for concept design and maintenance instruction. TMCE 2004, pp. 107114, Lausanne.Google Scholar
Tversky, B. (2002). What do sketches say about thinking. Proc. 2002 AAAI Spring Symp., pp. 148–151.Google Scholar
Ullman, D.G., Wood, S., & Craig, D. (1989). The importance of drawing in the mechanical design process. NSF Engineering Design Research Conf.Google Scholar
Visser, W. (2006). The Cognitive Artifacts of Designing. London: Erlbaum.Google Scholar
Wuersch, M., & Egenhofer, M. (2008). Perceptual sketch interpretation. Headway in Spatial Data Handling, pp. 1938.Google Scholar