Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-06T09:14:39.939Z Has data issue: false hasContentIssue false

Two Different Theoretical Approaches to the Base Pressure Problem in Two-Dimensional Supersonic Flow

Published online by Cambridge University Press:  07 June 2016

M. Tanner*
Affiliation:
DFVLR, Aerodynamische Versuchsanstalt Gottingen
Get access

Summary

The basic physical idea underlying the theories based on the flow model of CHAPMAN and KORST is that the base pressure can be predicted if the pressure at the reattachment point is known. In the new theory of TANNER the fundamental idea is the connection between the drag of the body and the entropy increase in the flow. This paper presents the essence of both theories together with theoretical and experimental results.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society. 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

5. References

[1] Tanner, M. Theoretische Bestimmung des Basisdruckes bei Überschallströmung. ZFW 1 (1977), pp.249259.Google Scholar
[2] Tanner, M. Theoretische Bestimmung des Basisdruckes in Uberschallströmung. DFVLR-AVA-Bericht IB 251-76 A 11 (1976).Google Scholar
[3] Chapman, D.R. Kuehn, D.M. Larson, H.K. Investigation of Separated Flows in Supersonic and Subsonic Streams with Emphasis on the Effect of Transition. NACA Rep. 1356 (1958).Google Scholar
[4] Korst, H.H. A Theory for Base Pressures in Transonic and Supersonic Flow. J.Appl.Mech 23 (1956), pp. 593600.CrossRefGoogle Scholar
[5] Tanner, M. Druckverteilungsmessungen an Keilen bei kompressibler Strömung. Z. Flugwiss. 18 (1970), pp.202208.Google Scholar
[6] Rogers, E.W.E. Berry, C.J. Quincey, V.G. Tests at Transonic Speeds on Wings with Wedge Sections and Sweep Varying between 0° and 60°. ARC R & M 3348 (1963).Google Scholar
[7] Page, R.H. A Review of Component Analysis of Base Pressure for Supersonic Turbulent Flow. Proc. 10th Int. Sympos. on Space Techn. and Sci. Tokyo 1973 (1973), pp.459469.Google Scholar
[8] Nash, J.F. An Analysis of Two-Dimensional Turbulent Base Flow, Including the Effect of the Approaching Boundary Layer. ARC R & M 3344 (1963).Google Scholar
[9] Roberts, J.B. On the Prediction of Base Pressure in Two-Dimensional Supersonic Turbulent Flow. ARC R & M 3434 (1966).Google Scholar
[10] McDonald, H. Turbulent Shear Layer Reattachment with Special Emphasis on the Base Pressure Problem. Aero. Quart. 15 (1964), pp. 247280.Google Scholar
[11] Carrière, P. Sirieix, M. Résultats récents dans l’étude des problèmes de mélange et de recollment. Proc. 11th Int. Congr. of Appi. Mech., München 1964 (1966).Google Scholar
[12] Tanner, M. Theoretical Prediction of Base Pressure for Steady Base Flow. Progr. Aerospace Sci. 14 (1973), pp.177225.CrossRefGoogle Scholar
[13] Carrière, P. Sirieix, M. Delery, J. Méthodes de calcul des écoulements turbulents décollés en supersonique. Progr. Aerospace Sci. 16 (1975), pp.385429.Google Scholar
[14] Tanner, M. The Pressure at the Reattachment Point in Subsonic Two-Dimensional Steady Base Flow. Aero. Quart. 27 (1976), pp. 5565.Google Scholar
[15] Tanner, M. Ein Beitrag zur Theorie der kompressiblen abgelösten Strömung um Keile. DLR-FB 72-57 (1972).Google Scholar
[16] Oswatitsch, K. Der Luftwiderstand als Integral des Entropiestromes. Nachr. Akad. Wiss. Göttingen, Math. Phys. K1. (1945), S. 8890.Google Scholar
[17] Sears, W.R. (Editor) General Theory of High Speed Aerodynamics. Princeton University Press, 1954.Google Scholar
[18] Tanner, M. Der Einflussder Hinterkantenform auf den Widerstand eines Rechteckflügels im Machzahlbereich von Ma =0,5 bis 2,2. DLR-FB 71-85 (1971).Google Scholar
[19] Fuller, L. Reid, J. Experiments on Two-Dimensional Base Flow at M = 2.4 . ARC R & M 3064 (1958).Google Scholar
[20] Tanner, M. Basisdruckmessungen an einer Platte und an einem Keil in dem Machzahlbereich von Ma = 2,8 bis 6,8. Z. Flugwiss. 20 (1972), pp.410413.Google Scholar
[21] Oswatitsch, K. Grundlagen der Gasdynamik. Springer-Verlag, Wien, New York 1976.Google Scholar
[22] Liepmann, H.W. Roshko, A. Elements of Gasdynamics. John Wiley, New York, London 1963.Google Scholar
[23] Tanner, M. Influence of the Boundary Layer Thickness on the Base Pressure in Two-Dimensional and Axisymmetric Supersonic Flows. ESA-TT-375 (1977).Google Scholar