An analysis of results from reports on droplet evaporation indicated a marked difference in behaviour depending upon the suspension technique used. Few results were obtained with freely falling droplets, the condition which is of interest in aerial spraying operations. Test results obtained at Cranfield by dropping droplets down a climatic tower showed two unexpected results.
The diameter of water droplets reduced linearly with time until they reached a size of about 150 micrometers and then the rate of reduction in diameter increased by about 27%. It is shown that this change occurs when the fall Reynolds number of the droplet becomes less than about 4.
Above this Reynolds number the airflow is separated from the base of the droplet and the trapped air in the toroidal vortex becomes fully saturated and no evaporation occurs over the base region. Below a Reynolds number of 4 the flow is attached everywhere and evaporation occurs from the whole surface area.
When small amounts of molasses are added to a spray formulation the droplets evaporated initially in a way similar to water droplets. As a result of falling, a toroidal vortex motion is induced within the droplet. This causes the same small fraction of the volume of the droplet to cycle close to the surface.
Hence, this fraction of the volume looses all its water, becomes far more viscous as a result and the consequence is the toroidal motion almost stops. In effect the molasses forms a skin over the droplet surface inhibiting further evaporation of the remaining volume of water.