Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T17:58:09.009Z Has data issue: false hasContentIssue false

Vortex Breakdown Effects on the Low-speed Aerodynamic Characteristics of Slender Delta Wings in Symmetrical Flow

Published online by Cambridge University Press:  04 July 2016

D. Hummel
Affiliation:
Institute for Fluid Mechanics of the Technical University of Braunschweig, West Germany
P. S. Srinivasan
Affiliation:
Department of Aeronautics and Applied Mechanics, Indian Institute of Technology, Madras

Extract

Even at small angles of incidence, the flow separates from the sharp leading edges of a slender wing. These flow separations usually lead to the formation of two free vortex layers, joined to the leading edges of the wing and rolling up to form spiral-shaped vortex sheets above the upper surface of the wing. This vortex formation is illustrated schematically in Fig. 1. The streamlines on the vortex sheet follow helical paths. Smoke injected near the wing apex for flow visualisation remains concentrated close to the axis of the core of the vortex sheet.

Type
Technical Notes
Copyright
Copyright © Royal Aeronautical Society 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Werlé, H.Sur l'éclatement des tourbillons d'apex d'une aile delta aux faibles vitesses. La Recherche Aéronautique, pp 2330, No. 74, 1960.Google Scholar
2.Elle, B. J.On the Breakdown at High Incidences of the Leading Edge Vortices on Delta Wings. Journal of the Royal Aeronautical Society, p 491, Vol. 64, 1960.CrossRefGoogle Scholar
3.Lambourne, N. C. and Bryer, D. W. The Bursting of Leading Edge Vortices. Some Observations and Discus sion of the Phenomenon. ARC RM 3282, 1962.Google Scholar
4.Lowson, M. V.Some Experiments With Vortex Breakdown. Journal of the Royal Aeronautical Society, pp 343346, Vol. 68, 1964.Google Scholar
5.Hummel, D.Untersuchungen über das Aufplatzen der Wirbel an schlanken Deltaflügeln. Zeitschr. Flugwiss., S 158168, Vol. 13, 1965.Google Scholar
6.Jones, J. P. The Breakdown of Vortices in Separated Flow. University of Southampton. Dept of Aeronautics and Astronautics, Report No. 140, 1960.Google Scholar
7.Ludwieg, H.Zur Erklärung der Instabilität der über angestellten Deltaflügeln auftretenden freien Wirbelkerne. Z Flugwiss, Vol 10, S 242249, 1962.Google Scholar
8.Brooke-Benjamin, T.Theory of the Vortex Breakdown Phenomenon. J Fluid Mech, Vol 14, pp 593629, 1962.Google Scholar
9.Ludwieg, H.Erklärung des Wirbelaufplatzens mit Hilfe der Stabilitätstheorie für Strömungen mit schraubenlinien-förmigen Stromlinien. Z Flugwiss, Vol 13, S 437442, 1965.Google Scholar
10.Peckham, D. H. Low Speed Wind Tunnel Tests on a Series of Uncambered Slender Pointed Wings with Sharp Edges. ARC RM 3186, 1961.Google Scholar
11.Earnshaw, P. B. and Lawford, J. A. Low Speed Wind Tunnel Experiments on a Series of Sharp Edged Delta Wings. Part I. Forces, Moments, Normal Force Fluctuations and Positions of Vortex Breakdown. RAE TN Aero 2780, 1961.Google Scholar
12.Elle, B. J. An Investigation at Low Speed of the Flow near the Apex of Thin Delta Wings with Sharp Leading Edges. ARC RM 3176, 1961.Google Scholar
13.Earnshaw, P. B. Measurements of Vortex Breakdown Position at Low Speed on a Series of Sharp-Edged Symmetrical Models. RAE Technical Report No 64047, 1964.Google Scholar