Published online by Cambridge University Press: 27 January 2016
Vision-based control is being aggressively pursued for autonomous systems. Such control is particularly valuable for path planning to achieve mission objectives like target tracking and obstacle avoidance. This paper presents a multi-rate strategy that utilises a fast-rate optic flow approach and a slow-rate scene reconstruction approach. The vehicle uses scene reconstruction to generate an accurate map for path planning; however, optic flow is used to avoid obstacles while the scene reconstruction is computed. A switch element is used in the feedback path to determine whether information relating to the reconstructed map or the optical flow should be used for navigation. The resulting controller is able to generate flight trajectories and perform obstacle avoidance within a computational cost which is reasonable given performance demands and computational resources on a wide range of aircraft. A simulation demonstrates the performance of an aircraft that uses the multi-rate controller to avoid an obstacle which is only observed after a turn. Essentially, the fast-rate optic flow indicates the presence of the obstacle during the time that slow-rate scene reconstruction is being performed. The resulting flight path is able to follow mission objectives and avoid a collision.