Published online by Cambridge University Press: 27 January 2016
This paper contributes to the prediction of aircraft noise. The framework of our study is based on a comprehensive analysis, which includes sub-models for airframe, propulsion and propeller noise. The sources models are complemented by various accounts of interference phenomena, including fuselage scattering, propeller shielding, wing and flap effects. The propagation of the acoustic pressures from the noise sources is done through a number of additional sub-models, which include spherical spreading, Doppler effects, ground reflection, shear winds and temperature gradients through the atmosphere. We present some fly-over noise data. The data include measurements by 13 microphones at community locations, meteorological data, and flight recorder data packs, which provide the complete state of the aircraft along the noise trajectory. Examples of verification are shown for the turboprop airplane Dash8-Q400, both on approach and departure. A sensitivity analysis is carried out to investigate the importance of the uncertainty effects, which are split between internal (aircraft and propulsion), external (atmospheric environment), and aircraft position.