No CrossRef data available.
Published online by Cambridge University Press: 11 February 2022
In this paper, the prediction of the unsteady flow field over typical high aspect ratio (AR) wings in the transonic flow regime but below the sonic Mach number is of interest. The methodology adopted is a computational approach based on the transonic small disturbance unsteady potential equation. It is shown that the higher AR wings generally have a higher lift coefficient as well as a higher lift-to-drag ratio. With NASA’s common research model (CRM) wing, there is an increase in maximum lift with increasing AR while the induced drag is almost the same. There is also an optimum sweep angle, which is different for each angle-of-attack so that variable sweep lifting surfaces may be designed to provide optimum solutions. The computed flutter speeds indicate an expected reduction with increasing AR.