Hostname: page-component-5f745c7db-q8b2h Total loading time: 0 Render date: 2025-01-07T04:56:15.311Z Has data issue: true hasContentIssue false

The TET 20 and TEA 8 Elements for the Matrix Displacement Method

Published online by Cambridge University Press:  04 July 2016

J. H. Argyris
Affiliation:
Imperial College of Science and Technology, University of London Institut für Statik und Dynamik der Luft-und Raumfahrtkonstruktionen, Universität Stuttgart
I. Fried
Affiliation:
Imperial College of Science and Technology, University of London Institut für Statik und Dynamik der Luft-und Raumfahrtkonstruktionen, Universität Stuttgart
D. W. Scharpf
Affiliation:
Imperial College of Science and Technology, University of London Institut für Statik und Dynamik der Luft-und Raumfahrtkonstruktionen, Universität Stuttgart

Extract

Following on from the LUMINA and HERMES elements discussed in TN’s 11 and 12, this note analyses two further three-dimensional elements outlined in ref. 1. These new elements possess the desirable features of completeness and consequent invariance of the polynomials for the displacement fields. It has been shown in ref. 2 and stated in ref. 1 that third order complete polynomials yielding a second order or parabolic strain distribution fit into a tetrahedron element with 20 nodal points and 60 degrees of freedom, denoted within ASKA as TET 20 (Fig. 1).

Type
Technical Notes
Copyright
Copyright © Royal Aeronautical Society 1968 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Argyris, J. H. The Computer Shapes the Theory. Lecture to the Royal Aeronautical Society, 19th May 1965. To be published in The Aeronautical Journal of the Royal Aeronautical Society.Google Scholar
2. Dunne, P. C. Complete Polynomial Displacement Fields for Finite Element Methods, The Aeronautical Journal of the Royal Aeronautical Society, Vol 72, No 687, pp 245246, March 1968.Google Scholar
3. Argyris, J. H. Continua and Discontinua, Opening Paper to the Air Force Conference on Matrix Methods in Structural Mechanics at Wright-Patterson Air Force Base, Dayton, Ohio, 26-28 October, 1965, Proceedings, December 1966.Google Scholar
4. Argyris, J. H., Fried, I. The LUMINA Element for the Matrix Displacement Method The Aeronautical Journal of the Royal Aeronautical Society, Vol 72, pp 514517, June 1968.Google Scholar
5. Argyris, J. H., Fried, I., Scharpf, D. W. The HERMES 8 Element for the Matrix Displacement Method, The Aeronautical Journal of the Royal Aeronautical Society, Vol 72, No 691, July 1968, pp 613617.Google Scholar
6. Argyris, J. H. Tetrahedron Elements with Linearly Varying Strain for the Matrix Displacement Method., The Aeronautical Journal of the Royal Aeronautical Society, Vol 69, No 660, pp 877880, December 1965.Google Scholar