Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-22T10:24:00.989Z Has data issue: false hasContentIssue false

Shock phenomena in high speed aerodynamics: still a source of major concern

Published online by Cambridge University Press:  04 July 2016

J. M. Délery*
Affiliation:
ONERA , 92190 Meudon, France

Abstract

Shockwaves are present in a flow as soon as the Mach number becomes supersonic. Being viscous phenomena, Shockwaves are a source of drag which can be predominant when the Mach number is significantly higher than one. In supersonic air intakes, the production of entropy by shocks is felt as a loss in efficiency. At high Mach numbers, Shockwaves produce a considerable temperature rise leading to severe heating problems, complicated by real gas effects. The intersection - or interference - of two shocks gives rise to complex wave patterns containing slip-lines and associated shear layers whose impingement on a nearby surface can cause detrimental pressure and heat transfer loads. The impact of a Shockwave on a boundary layer is the origin of strong viscous interactions which remain a limiting factor in the design of transonic wings, supersonic air intakes, propulsive nozzles and compressor cascades. More effort is needed to improve prediction of these interactions and to devise new techniques to control such phenomena.

Type
Lanchester lecture
Copyright
Copyright © Royal Aeronautical Society 1999 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ackroyd, J.A.D. Lanchester — the man. The 31st Lanchester Lecture, Aeronaut J, 1992, 96, (954), pp 119140.Google Scholar
2. Délery, J. and Marvin, J.G. Turbulent shockwave-boundary layer interaction, AGARDograph No 280, 1985.Google Scholar
3. Holden, M.S. Shockwave/turbulent boundary layer interaction in hypersonic flow, AIAA Paper 77-0045, 1977.Google Scholar
4. Lepmann, H.W. and Roshko, A. Elements of Gas Dynamics, John Wiley & Sons, 1957.Google Scholar
5. Pearcey, H.H. Some effects of shock-induced separation of turbulent boundary layer in transonic flow past aerofoils, ARC R&M No 3108, 1955.Google Scholar
6. Sadunas, J.A., French, E.P. and Dalnes, W.L. Prediction of nozzle side forces which occur during staging, AIAA J of Spacecraft, 1981, 18, (5), pp 406410.Google Scholar
7. Aupoix, B. An introduction to real gas effects, AGARD/FDP-VKI Special Course on Aerothermodynamics of Hypersonic Vehicles, AGARD-R-761, 1988.Google Scholar
8. Delery, J. Shock interaction phenomena in hypersonic flows. Part II: Physical features of shockwave-boundary layer interaction in hypersonic flows, In: AGARD Conference on Future Aerospace Technology in the Service of the Alliance, 14–16 April 1997, Ecole Polytechnique, Palaiseau, France.Google Scholar
9. Holden, M.S. A review of aerothermal problems associated with hypersonic flights, AIAA Paper 86-0267,1986.Google Scholar
10. Holden, M.S. Shock interaction phenomena in hypersonic flows. Part I: Aerothermal characteristics of shock-shock interaction regions in hypersonic flows. In: AGARD Conference on Future Aerospace Technology in the Service of the Alliance, 14–16 April 1997, Ecole Polytechnique, Palaiseau, France.Google Scholar
11. Délery, J. Shock interferences in high Mach number flows, La Recherche Aerospatiale, 1994, 3, pp 175185.Google Scholar
12. Délery, J. Aspects of vortex breakdown, Prog Aerospace Sci, 1994, 30, pp 159.Google Scholar
13. Jacquin, L., Cambon, C. and Blin, E. Amplification of turbulent kinetic energy by a Shockwave and rapid distorsion theory, Physics of Fluids, 1993, A5, (10).Google Scholar
14. Edney, B. Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock. Aeronautical Research Institute of Sweden, FFA Report 115, 1968.Google Scholar
15. Chpoun, A., Passerel, D., Lenorand, J.C., Bertrand, F. and Ben-Dor, G. Further experiments on regular and Mach reflections wave configurations in steady flows, AIAA Paper 92-2044, 1992.Google Scholar
16. Chpoun, A. and Ben-Dor, G. Stability of regular and Mach reflection wave configuration in steady flows, AIAA J, 1996, 34, (10), pp 21962198.Google Scholar
17. Ivanov, M.S., Markelov, G.N., Kudryavtsev, A.N. and Gimelshein, S.F. Transition between regular and Mach reflections of Shockwaves in steady flows, AIAA Paper 97-2511, 1997.Google Scholar
18. Borovoy, V., Chinilov, A., Glisev, V., Struminskaya, I., Délery, J. and Chanetz, B. Interference between a cylindrical bow shock and a plane oblique shock, AIAA J, 1997, 35, (11), pp 17211728.Google Scholar
19. Lefebvre, M., Chanetz, B., Pot, T.; Bouchardy, P. and Varghese, Ph. Mesures par Diffusion Raman Anti-Stokes Cohérente dans la soufflerie hypersonique R5Ch, La Recherche Aerospatiale, 1995, 4, pp 295298.Google Scholar
20. Settles, G.S. Swept shock/boundary layer interaction scaling laws, flowfield structure and experimental methods. AGARD/FDP-VKI Special Course on Shockwave-boundary Layer Interactions in Supersonic and Hypersonic Flows, AGARD Report 792, 1993.Google Scholar
21. Délery, J.M. and Panaras, A.G. Shockwave-boundary layer interactions in high Mach number flows, Hypersonic Experimental and Computational Capability, Improvement and Validation, AGARD-AR-319, 1, 1996.Google Scholar
22. Lighthill, M.J. On boundary layers upstream influence. II Supersonic flow without separation, In: Proc R Soc A217, 1953, pp 478507.Google Scholar
23. Settles, G.S., Perkins, J.J. and Bogdonope, S.M. Upstream influence scaling of 2D and 3D shock/turbulent boundary layer interactions at compression corners, AIAA Paper 81-0334, 1981.Google Scholar
24. Sirieix, M., Stanewsky, E. and Délery, J. High Reynolds number boundary layer/shockwave interactions in transonic flow. Lecture Notes in Physics 148, Springer Verlag, 1981.Google Scholar
25. Seddon, J. The flow produced by interaction of a turbulent boundary layer with a normal Shockwave of strength sufficient to cause separation, ARC R&M No 3502, 1960.Google Scholar
26. Délery, J. Experimental investigation of turbulence properties intransonic shock/boundary layer interactions, AIAA J, 1983, 21, (2), pp 180185.Google Scholar
27. Gerolymos, G.A. and Valet, I. Implicit computation of three-dimensional compressible Navier-Stokes equations using k-ε closure, AIAA J, 38, (7), pp 13211330.Google Scholar
28. Leschziner, M.A. Computation of aerodynamics flows with turbulence-transport models based on 2-moment closure. Computers and Fluids, 1995,24, pp 377392.Google Scholar
29. ERCOFTAC Workshop on Shock/boundary layer interaction, UMIST, 25–26 March 1997, Batten, P., Loyau, H. and Leschziner, M.A. (Eds).Google Scholar
30. Reijasse, P. and Corbel, B. Décollement de l'écoulernent externe in-duit par l'éclatement du jet propulsif sur un rétreint d'arrière-corps de missile. 34eme Colloque d'Aérodynamique Appliquée de l'AAAF, Marseille, 23–25 March 1998.Google Scholar
31. Douay, G. Modélisation et étude Numérique de la Turbulence Compressible en Ecoulement Supersonique, PhD Thesis, University of Rouen, France, 1994.Google Scholar
32. Chanetz, B., Benay, R., Bousquet, J.-M., Bur, R., Pot, T., Grasso, F. and Moss, J. Experimental and numerical study of the laminar separation in hypersonic flow, Aerospace Science and Technology,1998, 3, pp 205-218.Google Scholar
33. Regenscheit, B. Drag reduction by suction of the boundary layer separated behind Shockwave formation and high Mach numbers (English translation), NACA TM N° 1168, 1941.Google Scholar
34. Fage, A. and Sargent, R.F. Effect on aerofoil drag of boundary layer suction behind a Shockwave, ARC R&M No 1913, 1943.Google Scholar
35. Pearcey, H.H. Shock-induced separation and its prevention by design and boundary layer control. In: Boundary Layer and Flow Control, 2, Lachmann, G.V. (Ed) Pergamon Press, 1961.Google Scholar
36. Delery, J. Shockwave/turbulent boundary layer interaction and its control, Prog Aerospace Sci, 1985, 22, pp 209280.Google Scholar
37. Euroshock — Drag Reduction by Passive Control. Results of the Project Euroshock, AER2-CT92-0049 Supported by the European Union, 1993–1995, Stanewsky, E., Délery, J., Fulker, J. and Geissler, W. (Eds), Notes on Numerical Fluid Mechanics, 56, Vieweg, 1997 Google Scholar
38. Savu, G., Trifu, O. and Dimitrescu, L.Z. Suppression of shocks on transonic aerofoils, In: 14th Int Symp on Shock Tubes and Waves, Sydney, Australia, 1983.Google Scholar
39. Bahi, L., Ross, J.M. and Nagamatsu, H.T. Passive shockwave-boundary layer interaction control for transonic aerofoil drag reduction, AIAA Paper 83-0137, 1983.Google Scholar
40. Bur, R. Etude fondamentale sur le contrôle passif de l'interaction onde de choc-couche limite turbulente en ecoulement transsonique. PhD Dissertation, University Pierre et Marie Curie, Paris, 6 March 1991, English translation ESA TT 1278.Google Scholar
41. Bur, R., Corbel, B. and Délery, J. Study of passive control in a transonic shockwave-boundary layer interaction, AIAA J, 1998, 36, (3), pp 740752.Google Scholar
42. Thiede, P., Krogmann, P. and Stanewsky, E. Active and passive shock/boundary layer interaction control on supercritical aerofoils, AGARDCP-365, 1984.Google Scholar
43. Lee, D.B. Etude de l'interaction onde de choc — couche limite turbulente sur paroi poreuse avec aspiration. PhD Dissertation, University of Poitiers, France.Google Scholar
44. Bohning, R. and Doerffer, P. Passive control of Shockwave — boundary layer interaction and porous plate transpiration flow. In: Notes on Numerical Fluid Mechanics, 56, Vieweg, 1997.Google Scholar
45. Cebeci, T. Behavior of turbulent flow near a porous wall with pressure gradient, AIAA J, 1970, 8, (12).Google Scholar