Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-03T14:11:07.353Z Has data issue: false hasContentIssue false

The Second Goldstein Lecture. Modern developments in fluid dynamics- an addendum*

Published online by Cambridge University Press:  04 July 2016

J. E. Green*
Affiliation:
Aircraft Research AssociationBedford

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Addendum
Copyright
Copyright © Royal Aeronautical Society 1992 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

An abridged version of the Second Goldstein Lecture given at Manchester University to the Manchester Branch of the Royal Aeronautical Society on 30 October 1991. ARA Memo 361.

References

1. Austen, J. The history of England by a partial, prejudiced and ignorant historian. 1791.Google Scholar
2. Green, J. E. The Contribution to Aircraft Design of Research in Fluid Dynamics. RAE TM Aero 1841, April 1980.Google Scholar
3. Green, J. E. Modern developments in fluid dynamics. Ed: Goldstein, S., 1938.Google Scholar
4. Gibbs-Smith, C. H. Sir George Cayley's aeronautics 1796-1855. HMSO London, 1962.Google Scholar
5. Gibbs-Smith, C. H. Osborne Reynolds and engineering science today Eds: McDowell, D. M. and Jackson, J. D., Manchester University Press, 1970.Google Scholar
6. Lanchester, F. W. Aerodynamics. Constable & Co, London, 1907.Google Scholar
7. Kutta, W. M. Auftriebskräfte in stromenden Flüssigkeiten. Illust Aeronaut Mitt, 1902, 6, pp 133135.Google Scholar
8. Joukowski, N. E. De la chute dans l'air de corps légers de forme allongée, animés d'un mouvement rotatoire. Bulletin de l'lnstitut Aérodynamique de Koutchino, Fascicule 1, St Pétersbourg, 1906.Google Scholar
9. Prandtl, L. Über Flüssigkeitsbewegung bei sehr kleiner Reibung Vehr III Int Math Kongr, Heidelberg, pp 484491. Teubner, Leipzig, 1904.Google Scholar
10. Prandtl, L. Tragflügeltheorie. 1 Mitteilung, Nachrichten von der kgl Gessellschaft der Wissenschaften zu Göttingen, Math- phys. Klasse 1918, p 451. 11 Mitteilung, ibid, Klasse 1919, p 107.Google Scholar
11. Fiddes, S. P., Kirby, D. A., Woodward, D. S. and Peckham, D. H. Investigations into the effects of scale and compressibility on lift and drag in the RAE 5 m pressurised low-speed wind tunnel, Aeronaut J, March 1985, 89, (883), pp 93108.Google Scholar
12. Steinle, F. and Stanewsky, E. Wind Tunnel Flow Quality and Data Accuracy Requirements. AGARD Report AR-184, 1982.Google Scholar
13. Carter, E. C. and Pallister, K. C. Development of Testing Techniques in a Large Transonic Wind Tunnel to Achieve a Required Drag Accuracy and Flow Standards for Modern Civil Transports. AGARD CP-429, Paper 11, July 1987.Google Scholar
14. Loving, D.L. Wind-Tunnel-Flight Correlation of Shock-Induced Separated Flow. NASA TN D-3580, September 1966.Google Scholar
15. Loving, D.L. Facilities and Techniques for Aerodynamic Testing at Transonic Speeds and High Reynolds Number. AGARD CP-83-71, August 1971.Google Scholar
16. Green, J. E. Numerical Methods in Aeronautical Fluid Dynamics- An Introduction. Ed: Roe, P. L., Academic Press, 1982.Google Scholar
17. Green, J. E. Boundary Layer Simulation and Control in Wind Tunnels. AGARD-AR-224, Report of AGARD WG09, Ed: Laster, M. L..Google Scholar
18. Bocci, A. J. Aerofoil Design for Full Scale Reynolds Number. ARA Memo 211, 1979.Google Scholar
19. Green, J. E. A Discussion of Viscous-Inviscid Interactions at Transonic Speeds. RAE TR 72050, May 1972.Google Scholar
20. Goldstein, S. Low Drag and Suction Aerofoils. 11th Wright Bros Lecture, Aeronaut J, 1948, 15, pp 189220.Google Scholar
21. Collyer, M. R. and Lock, R. C. Prediction of viscous effects in steady transonic flow past an aerofoil. Aeronaut Q, August 1979, 30, pp 485505.Google Scholar