Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-22T15:49:56.136Z Has data issue: false hasContentIssue false

Relaxation Effects in Gas Dynamics

Published online by Cambridge University Press:  04 July 2016

Ernst Becker*
Affiliation:
Institut für Mechanik der Technischen Hochschule, Darmstadt

Extract

Classical gas dynamics is by definition the dynamics of gases that are in local thermodynamic equilibrium everywhere in the flow field so that their thermodynamic behaviour is completely specified by two independent variables of state, for example by pressure p and density p. The fundamental assumption of local thermodynamic equilibrium is not valid in many flow situations of practical importance, and this fact has given rise to a revision and generalisation of classical gas dynamics. This generalisation is usually called “relaxation gas dynamics”. Ten years ago J. Ackeret mentioned this subject briefly at the end of the Daniel and Florence Guggenheim Memorial Lecture on The Role of Entropy in the Aerospace Sciences. He gave that lecture at the 2nd International Congress of the Aeronautical Sciences in Zürich (12th September 1960) and he said on that occcasion: “Non-equilibrium states are of growing importance, for strictly speaking, exact (thermodynamic) equilibrium occurs only relatively seldom in gas dynamics. However, a rational theory of nonequilibrium states must necessarily be extremely complicated….

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 1970 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ackeret, J. Uber Widerstande, die durch gasdynamische Relaxation hervorgerufen werden. Zeitschr. f. Flugwissenschaften, Vol 4, p. 14, 1956.Google Scholar
2. Ackeret, J. The Role of Entropy in the Aerospace Sciences. J. Aerospace Sci, Vol 28, p. 81, 1961.Google Scholar
3. Baganoff, D. Experiments on the Wall-Pressure History in Shock-Reflexion Processes. J Fluid Mech, Vol 23, p. 209, 1965.Google Scholar
4. Becker, E. Gas Dynamics, Academic Press, New York, London, 1968.Google Scholar
5. Becker, E. Neuere Probleme der Dynamik realer Gase. ZAMM, Vol 47, T 3, 1967.Google Scholar
6. Becker, E. Steady One-dimensional Flow of a Gas with Relaxation, AGARD CP Nr 12: Recent Advances in Aerothermochemistry (ed by Glassman, I.), 477, 1967.Google Scholar
7. Becker, E. and Schmitt, H. Die Entstehung von ebenen, zylinder-und kugelsymmetrischen Verdichtungsstossen in relaxierenden Gasen. Ing Arch, Vol 36, p. 335, 1968.Google Scholar
8. Becker, E. and Böhme, G. Steady One-Dimensional Flows; Structure of Compression Waves. Gasdynamics, a Series of Monographs (ed. by Wegener, P. P.), Vol I, Non- equilibrium Flows, Part I, Marcel Dekker, New York, London, 1969.Google Scholar
9. Becker, E. Second Order Viscosity Approximation for a Relaxing Gas. Ing Arch, Vol 38, p. 204, 1969.Google Scholar
10. Becker, E. Die Entstehung von Verdichtungsstössen in kompressiblen Medien. To be published. Ing Arch, 1970.Google Scholar
11. Becker, R. Stosswelle und Detonation. Z Physik, Vol 8, p. 321, 1922. Also NACA TM 505, 506, 1929.Google Scholar
12. Blackman, V. H. Vibrational Relaxation in Oxygen and Nitrogen. J Fluid Mech, Vol 10, p. 33, 1961.Google Scholar
13. Blythe, P. A. Non-linear Wave Propagation in a Relaxing Gas. J Fluid Mech, Vol 37, p. 31, 1969.Google Scholar
14. Böhme, G. Verdichtungsstosse in einem ideal dissoziierenden Gas. Ing Arch, Vol 36, p. 335, 1967.Google Scholar
15. Böhme, G. Relaxationserscheinungen bei eindimensionalen Gasstromungen. Dissertation, Darmstadt, 1968.Google Scholar
16. Bray, K. N. C. Chemical and Vibrational Non-equilibrium in Nozzle Flows. Gasdynamics, a Series of Monographs (ed. by Wegener, P. P.), Vol I, Non-equilibrium Flows, Part II, Marcel Dekker, New York, London, 1970.Google Scholar
17. Broer, L. J. F. On the Influence of Acoustic Relaxation on Compressible Flow. Appl Sci Res, A2, p. 447, 1950.Google Scholar
18. Broer, L. J. F. Characteristics of the Equations of Motion of a Reacting Gas. J Fluid Mech, Vol 4, p. 276, 1958.Google Scholar
19. Broer, L. J. F. Some Basic Properties of Relaxation Gas Dynamics. Gasdynamics, a Series of Monographs (ed. by P. P. Wegener), Vol I, Non-equilibrium Flows, Part II, Marcel Dekker, New York, London, 1970.Google Scholar
20. Buggisch, H. Analytische Untersuchungen zur Reflexion von Verdichtungsstossen in relaxierenden Gasen. Dissertation, Darmstadt, 1969.Google Scholar
21. Buggisch, H. Eine analytische Losung fur die Reflexion schwacher Wellen bei relaxierenden Gasen ZAMM, Vol 49, p. 495, 1969.Google Scholar
22. Bürger, W. Zur Entstehung von Verdichtungsstossen beim “Kolbenversuch” in Gasen mit thermodynamischer Relaxation. ZAMM, Vol 46, p. 149, 1966.Google Scholar
23. Bürger, W. Verdichtungswellen endlicher Amplitude in Gasen mit thermodynamischer Relaxation. Dissertation, Darmstadt, 1967.Google Scholar
24. Chu, B. T. Wave Propagation and the Method of Characteristics in Reacting Gas Mixtures with Applications to Hypersonic Flow. Brown University, WADC TN 57— 213, 1957.Google Scholar
25. Chu, B. T. Weak Non-linear Waves in Non-equilibrium Flow. Gasdynamics, a Series of Monographs (ed. by P. P. Wegener), Vol I, Nonequilibrium Flows, Part II, Marcel Dekker, New York, London, 1970.Google Scholar
26. Clarke, J. F. The Linearized Flow of a Dissociating Gas. J Fluid Mech, Vol 7, p. 577, 1960.Google Scholar
27. Clarke, J. F. Small Disturbance Theories. Gasdynamics, a Series of Monographs (ed. by Wegener, P. P.), Vol I, Non-equilibrium Flows, Part I, Marcel Dekker, New York, London, 1969.Google Scholar
28. Clarke, J. F. and Mcchesney, M. The Dynamics of Real Gases. Butterworth, London and Washington, D.C., 1964.Google Scholar
29. Clarke, J. F. and Rogers, J. B. Shock Waves in a Gas with Several Relaxing Internal Energy Modes. J Fluid Mech, Vol 21, p. 591,1965.Google Scholar
30. Coleman, B. D., Gurtin, M. E., Herrera, I., Truesdell, C Wave Propagation in Dissipative Materials. A Reprint of Five Memoirs. Springer-Verlag, Berlin-Heidelberg-New York, 1965.Google Scholar
31. Coleman, B. D. and Gurtin, M. E. Growth and Decay of Discontinuities in Fluids with Internal State Variables. Phys Fluids, Vol 10, p. 1454, 1967.Google Scholar
32. Dunwoody, J. High-frequency Sound Waves in Ideal Gases with Internal Dissipation. J Fluid Mech, Vol 34, p. 769, 1968.Google Scholar
33. Einstein, A. Sitz. Ber. d. preuss. Akad. d. Wiss, 380,1920.Google Scholar
34. Faller, L. Relaxation Methods in Chemistry. Scientific American, Vol 220, Nr. 5, 30,1969.Google Scholar
35. Greenberg, J. M. The Existence of Steady Shock Waves in Nonlinear Materials with Memory. Arch Rat Mech Anal, Vol 24, p. 1, 1967.Google Scholar
36. Griffith, W. C. Vibrational Relaxation Times. Fundamental Data obtained from Shock Tube Experiments. Pergamon Press, London, 1961.Google Scholar
37. Hayes, W. D. Gasdynamic Discontinuities. Princeton University Press, Princeton N.J., 1960.Google Scholar
38. Herzfeld, K. F. Relaxation Phenomena in Gases. High Speed Aerodynamics and Jet Propulsion, Vol 1, H, p. 646,Google Scholar
39. Herzfeld, K. F., and Litovitz, T. A. Absorption and Dispersion of Ultrasonic Waves. Academic Press, New York, London, 1959.Google Scholar
40. Jeffrey, A. The Development of Jump Discontinuities in Nonlinear Hyperbolic Systems of Equations in Two Independent Variables. Arch Rat Mech Anal, Vol 14, p. 27, 1963.Google Scholar
41. Johannesen, N. H., Zienkiewicz, H. K., Blythe, P. A.and Gerrard, N. H. Experimental and Theoretical Analysis of Vibrational Relaxation Regions in Carbon Dioxide. J Fluid Mech, Vol 13, p. 213, 1962.Google Scholar
42. Johannesen, N. H. Bird, G. A. and Zienkiewicz, H. K. Theoretical and Experimental Investigation of the Reflexion of Normal Shock Waves with Vibrational Relaxation. J. Fluid Mech, Vol 30, p. 51, 1967.Google Scholar
43. Jones, J. G. On the Near-equilibrium and Near-frozen Regions in an Expansion Wave in a Relaxing Gas. J Fluid Mech, Vol 19, p. 81,1964.Google Scholar
44. Kantrowitz, A. Heat Capacity Lag in Gas Dynamics. J Chem Phys, Vol 14, p. 150, 1946.Google Scholar
45. Kneser, H. O. Schallabsorbtion und -dispersion in Gasen. Encyclopedia of Physics, Vol IX, p. 1, 129, 1961.Google Scholar
46. Kraiko, A. N. The Onset of Shock Waves in Non- equilibrium Flows. PMM, Vol 31, p. 794, 1967. Engl. Translation in PMM, Vol 31, 1967, 803, 1968.Google Scholar
47. Lick, W. Wave Propagation in Real Gases. Adv in Appl Mech, Vol 10, 1967, Academic Press, New York, London.Google Scholar
48. Lighthill, M. J. Viscosity in Waves of Finite Amplitude. Surveys in Mechanics. Cambridge University Press, 1956.Google Scholar
49. Meixner, J. Stromung von fluiden Medien mit inneren Umwandlungen. Ann Phys, Vol 131, p. 456,1952.Google Scholar
50. Meixner, J. Allgemeine Theorie der Schallabsorbtion in Gasen und Fltissigkeiten unter Beriicksichtigung der Transporterscheiunugen. Acustica, Vol 2, p. 101, 1952.Google Scholar
51. Moore, F. K. and Gibson, W. E. Propagation of Weak Disturbances in a Gas Subject to Relaxation Effects. J Aerospace Sci, Vol 27, p. 117,1960.Google Scholar
52. Moran, J. P. and Shen, S. F. On the Formation of Weak Plane Shock Waves by Impulsive Motion of a Piston. J Fluid Mech, Vol 25, 1966.Google Scholar
53. Morrison, J. Wave Propagation in Rods of Voigt Materials and Visco-Elastic Materials with Three-Parameter Models. Quart Appl Math, Vol 14, p. 153,1956.Google Scholar
54. Oswatitsch, K. Der Luftwiderstand als Integral des Energiestroms. Nachr. Ges. Wiss. Gottingen, math.-phys. Kl. Vol 88, 1945.Google Scholar
55. Pipkin, A. C. Shock Structure in Visco-Elastic Fluid. Quart Appl Maths, Vol 23, p. 297,1965.Google Scholar
56. Prandtl, L. Zur Theorie des Verdichtungsstosses. Z. ges Turbinenwes. Vol 3, p. 241,1906.Google Scholar
57. Rarity, B. S. H. On the Breakdown of Characteristics Solutions in Flows with Vibrational Relaxation. J Fluid Mech, Vol 27, p. 49,1967.Google Scholar
58. Romberg, G. Widerstand und Schub in stationaren Stromungen ohne aussere Krafte. ZAMM, Vol 46, p. 303, 1966.Google Scholar
59. Rudinger, G. Relaxation in Gas-Particle Flow. Gasdynamics, a Series of Monographs (ed. by P. P. Wegener), Vol I, Non-equilibrium Flows, Part I, Marcel Dekker, New York, London, 1969.Google Scholar
60. Schmitt—v., Schubert, B. StrSmungen von Gasen mitfesten Teilchen. Dissertation, Darmstadt. 1968.Google Scholar
61. Schmitt, H. Fortpflanzung schwacher Unstetigkeiten beinichtlinearen Wellenausbreitungsvorgangen. ZAMM, Vol 48, T 241, 1968.Google Scholar
62. Sedney, R. The Method of Characteristics. Gasdynamics, a Series of Monographs (ed. by P. P. Wegener, ), Non-equilibrium Flows, Vol II, Marcel Dekker, New York, London, 1970.Google Scholar
63. Spence, D. A. Unsteady Shock Propagation in a Relaxing Gas. Proc. Roy. Soc. A 264,1961.Google Scholar
64. Stupochenko, YE. V., Losev, S. A. and Osipov, A. I. Relaxation in Shock Waves. (Transl. by Scripta Technica, Inc.) Springer-Verlag, Berlin, Heidelberg, New York, 1967.Google Scholar
65. Varley, E. and Cumberbatch, E. Non-linear Theory of Wave-Front Propagation. J Inst Maths Applies, Vol 1, p. 101, 1965.Google Scholar
66. Varley, E. Acceleration Fronts in Viscoelastic Materials. Arch Rat Mech Anal, Vol 19, p. 215, 1965.Google Scholar
67. Varley, E. and Rogers, T. G. The Propagation of High-frequency Finite Acceleration Pulses and Shocks in Viscoelastic Materials. Proc. Roy. Soc. A 296, 498, 1967.Google Scholar
68. Vincenti, W. G. Non-equilibrium Flow over a Wavy Wall. J Fluid Mech, Vol 6, p. 481, 1959.Google Scholar
69. Vincenti, W. G. and Kruger, C. H. Introduction to Physical Gas Dynamics. J. Wiley, New York, 1965.Google Scholar
70. Wegener, P. P. Gas Dynamics, Impact on Chemistry. Chem. a. Engn. News, Vol 44, p. 76,1966.Google Scholar
71. Wegener, P. P. Gas Dynamics of Expansion Flows with Condensation and Homogeneous Nucleation in Water Vapor. Gasdynamics, a Series of Monographs (ed. by Wegener, P. P.), Vol I, Non-equilibrium Flows, Part I, Marcel Dekker, New York, London, 1969.Google Scholar
72. Whitham, G. B. Some Comments on Wave Propagation and Shock Wave Structure with Application to Magneto-Hydrodynamics. Comm Pure Appl Math, Vol 12, p. 113, 1959.Google Scholar
73. Zeldovich, YA. B. and Raizer, YU. P. Physics of Shock Waves and High-temperature Hydrodynamic Phenomena. (Transl. by Hayes, W. D. and Probstein, R. F.), Vols I, II. Academic Press, New York, London, 1967.Google Scholar