Published online by Cambridge University Press: 04 July 2016
Aerospace designers are increasingly interested in predicting unsteady flowfields such as those associated with store release, rotating propellers etc. However, the cost of performing fully unsteady calculations is usually prohibitively expensive. In order to address this problem for unsteady flows driven by a moving surface, a novel method is presented which calculates the time derivates as an analytic function of the instantaneous flowfield. This allows an accurate solution of the unsteady flow equations to be calculated using a quasi-unsteady approach. The validity of this approach is demonstrated for a store release and a propeller test case. Possible extensions to this method for more complex unsteady flows are presented.