Published online by Cambridge University Press: 03 February 2016
Although macro-scale synthetic jets are well studied, our knowledge of the behaviour of micro-scale synthetic jets is still extremely limited due to the difficulty in performing detailed measurements with a desirable spatial solution. In the work presented in this paper, a PIV study of the characteristics of synthetic jets issued into quiescent air from orifices of 5mm and 0·5mm diameter respectively is undertaken. It is found that the vortex rollup is much weaker for the 0·5mm jets due to their low Stokes number which results in a near parabolic exit velocity profile. To ensure an appreciable vortex rollup that is desirable for effective flow control, the actuator has to be operated at much higher frequencies to ensure that the Stokes number is greater than a certain threshold value. Furthermore the study shows that the characteristics of synthetic jets of different scales are identical when the dimensionless stroke length (L), Stokes number (S) and Reynolds number (ReL) are the same. On the basis of these scaling parameters, the finding acquired from the studies on macro-scale actuators can be applicable to micro-scale actuators, which are more difficult to measure. Finally, it is also found that although the linear relationships between (L and ReL) and actuator operating conditions observed for macro-scale synthetic jets are no longer valid for micro-scale synthetic jets, the linear relationships between the dimensionless jet performance parameters and (L and ReL) still exist for micro-scale synthetic jets.