Published online by Cambridge University Press: 27 January 2016
This paper presents a new adaptive algorithm for the statistical filtering of miniaturised inertial sensor noise. The algorithm uses the minimum variance method to perform a best estimate calculation of the accelerations or angular speeds on each of the three axes of an Inertial Measurement Unit (IMU) by using the information from some accelerometers and gyros arrays placed along the IMU axes. Also, the proposed algorithm allows the reduction of both components of the sensors’ noise (long term and short term) by using redundant linear configurations for the sensors dispositions.
A numerical simulation is performed to illustrate how the algorithm works, using an accelerometer sensor model and a four-sensor array (unbiased and with different noise densities). Three cases of ideal input acceleration are considered: 1) a null signal; 2) a step signal with a no-null time step; and 3) a low frequency sinusoidal signal.
To experimentally validate the proposed algorithm, some bench tests are performed. In this way, two sensors configurations are used: 1) one accelerometers array with four miniaturised sensors (n = 4); and 2) one accelerometers array with nine miniaturised sensors (n = 9). Each of the two configurations are tested for three cases of input accelerations: 0ms−1, 9·80655m/s2 and 9·80655m/s2.