Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-22T11:53:48.845Z Has data issue: false hasContentIssue false

The low acoustic noise and turbulence wind tunnel of the University of Sao Paulo

Published online by Cambridge University Press:  04 October 2021

F.R. Amaral*
Affiliation:
Department of Aerodynamics, Aeronautics Institute of Technology (ITA), Sao Jose dos Campos, Brazil
J.C. Serrano Rico
Affiliation:
Department of Mechanical Engineering, University of Pamplona, Pamplona, Colombia
C.S. Bresci
Affiliation:
Department of Aeronautical Engineering, University of Sao Paulo (USP), Sao Carlos, Brazil
M.M. Beraldo
Affiliation:
Department of Aeronautical Engineering, University of Sao Paulo (USP), Sao Carlos, Brazil
V.B. Victorino
Affiliation:
Department of Aeronautical Engineering, University of Sao Paulo (USP), Sao Carlos, Brazil
E.M. Gennaro
Affiliation:
Sao Paulo State University (UNESP), Sao Joao da Boa Vista, Brazil
M.A.F. Medeiros
Affiliation:
Department of Aeronautical Engineering, University of Sao Paulo (USP), Sao Carlos, Brazil
*
*Corresponding: [email protected]

Abstract

This paper introduces the Low Acoustic Noise and Turbulence (LANT) wind tunnel of the Sao Carlos School of Engineering, University of Sao Paulo (USP-EESC), Brazil. The closed-loop wind tunnel features several devices to improve flow uniformity, reduce swirl, and lower the background acoustic noise and turbulence, enabling stability and aeroacoustic experiments. The design criteria was based on the best practices reported, in particular for low turbulence wind tunnels. Yet, these criteria are conflicting and we discuss the decisions that had to be made and present flow quality results that were achieved. The 16-bladed axial fan with 13-blade stators is driven by a variable-speed electric motor. At the corners, 100 mm dense acoustic foam is installed on the vertical walls, floor and ceiling, and the turning vanes are filled with acoustic-absorbing material. The long settling chamber contains a 3.175 mm mesh hexagonal honeycomb and five fine mesh nylon screens, ending in a 7:1 area ratio short contraction. The 3-m long closed-working section has a $1\times 1\ {\rm m}^2$ cross-section area. At 15 m/s the working section wall boundary layer is less than 100 mm thick, providing an area of at least $800\times 800\ \mathrm{mm}^2$ where the streamwise flow uniformity was within 1%. In the 10–30 m/s flow speed range, the turbulence intensity ranged from 0.05% to 0.071% and the background acoustic noise level, obtained with an inflow microphone, ranged from 90 and 110 dB. A benchmark experiment on a flat plate boundary layer produced an almost perfect two-dimensional Blasius profile up to $Re_x \approx 2.5 \times 10^6$ . A beamforming benchmark experiment on aeroacoustics accurately identified the sound emitted by a cylinder immersed in the flow.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Argüelles, P., Lumdsen, J., Bischoff, M., Ranque, D., Busquin, P., Rasmussen, S., Droste, B.A.C., Reutlinger, P., Evans, R., Robins, R., Kröll, W., Terho, H., Lagardère, J.-L., Wittlöv, A. and Lina, A. European Aeronautics: A Vision for 2020, Meeting Society’s Needs and Winning Global Leadership, Tech Rep, European Comission, 2001.Google Scholar
Schrauf, G. Status and perspectives of laminar flow, Aeronaut. J., 2005, 109, pp 639644. doi: 10.1017/S000192400000097X.CrossRefGoogle Scholar
Eckert, W.T., Mort, K.W. and Jope, J. Aerodynamic design guidelines and computer program for estimation of subsonic wind tunnel performance, Tech Rep NASA-TN-D-8243, NASA, 1976. URL: https://ntrs.nasa.gov/search.jsp?R=19770005050.Google Scholar
Reshotko, E., Saric, W.S. and Nagib, H.M. Flow quality issues for large wind tunnels, 35th Aerospace Sciences Meeting and Exhibit, 1997, p 225. doi: 10.2514/6.1997-225.CrossRefGoogle Scholar
Cattafesta, L., Bahr, C. and Mathew, J. Fundamentals of wind-tunnel design, Encyclop. Aerospace Eng., 2010, p 10. doi: 10.1002/9780470686652.eae532.Google Scholar
Devenport, W.J., Burdisso, R.A., Borgoltz, A., Ravetta, P.A., Barone, M.F., Brown, K.A. and Morton, M.A. The kevlar-walled anechoic wind tunnel, J. Sound Vibr., 2013, 332, pp 39713991. doi: 10.1016/j.jsv.2013.02.043.CrossRefGoogle Scholar
Remillieux, M., Crede, E., Camargo, H., Burdisso, R., Devenport, W., Rasnick, M., Van Seeters, P. and Chou, A. Calibration and demonstration of the new Virginia Tech anechoic wind tunnel, 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference), 2008, p 2911. doi: 10.2514/6.2008-2911.CrossRefGoogle Scholar
Hunt, L., Downs, R., Kuester, M., White, E. and Saric, W. Flow quality measurements in the Klebanoff-Saric wind tunnel, 27th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2010, p 4538. doi: 10.2514/6.2010-4538.CrossRefGoogle Scholar
Nagib, H., Hites, M., Won, J.-K. and Fravante, S. Flow quality documentation of the national diagnostic facility, 25th Plasmadynamics and Lasers Conference, 1994, p 2499. doi: 10.2514/6.1994-2499.CrossRefGoogle Scholar
Hites, M. and Nagib, H. Measurement of disturbance levels in the National Diagnostic Facility, 32nd Aerospace Sciences Meeting and Exhibit, 1994, p 770. doi: secondoftwo rm 10.2514/6.1994-770.CrossRefGoogle Scholar
Premi, A., Maughmer, M. and Brophy, C. Flow-quality measurements and qualification of the Pennsylvania State University low-speed, low-turbulence wind tunnel, 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2012, p 1214. doi: 10.2514/6.2012-1214.CrossRefGoogle Scholar
Mathew, J., Bahr, C., Sheplak, M., Carroll, B. and Cattafesta, L.N. Characterization of an anechoic wind tunnel facility, ASME 2005 International Mechanical Engineering Congress and Exposition (IMECE2005), American Society of Mechanical Engineers, 2005, p 81737. doi: 10.1115/IMECE2005-81737.CrossRefGoogle Scholar
Pascioni, K., Reger, R., Edstrand, A. and Cattafesta, L. Characterization of an aeroacoustic wind tunnel facility, 43rd International Congress on Noise Control Engineering (INTER.NOISE 2014), 2014, p 10. URL: http://www.acoustics.asn.au/conference_proceedings/INTERNOISE2014/papers/p584.pdf.Google Scholar
McGhee, R.J., Beasley, W.D. and Foster, J.M. Recent modifications and calibration of the Langley low-turbulence pressure tunnel, Tech Rep TP-2328, NASA, 1984. URL: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19840019607.pdf.Google Scholar
Sellers, W. III and Kjelgaard, S.O. The basic aerodynamics research tunnel – A facility dedicated to code validation, 15th Aerodynamic Testing Conference, 1988, p 1997. doi: 10.2514/6.1988-1997.CrossRefGoogle Scholar
Borgmann, D., Hosseinverdi, S., Little, J.C. and Fasel, H. Investigation of low-speed boundary-layer instability and transition using experiments, theory and DNS, AIAA Aviation 2020 Forum, 2020, p 2948. doi: 10.2514/6.2020-2948.CrossRefGoogle Scholar
Syms, F. Acoustic upgrades to wind tunnels at the National Research Council Canada, 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), 2012, p 2180. doi: 10.2514/6.2012-2180.CrossRefGoogle Scholar
Johansson, A.V. A low speed wind-tunnel with extreme flow quality – design and tests, 18th International Congress of the Aeronautical Sciences (ICAS 1992), 1992, pp 1603–1611. URL: http://www.icas.org/ICAS_ARCHIVE/ICAS1992/ICAS-92-3.8.1.pdf.Google Scholar
Lindgren, B. and Johansson, A.V. Design and evaluation of a low-speed wind-tunnel with expanding corners, Tech Rep TRITA-MEK 2002:14, KTH, 2002. URL: https://www.researchgate.net/profile/Jens_Osterlund/publication/225571421_Measurement_and_calculation_of_guide_vane_performance_in_expanding_bends_for_wind-tunnels/links/0f31753625c0dda631000000.pdf#page=75">..>Google Scholar
Barrett, R.V. Design and performance of a new low turbulence wind tunnel at Bristol University, Aeronaut. J., 1984, 88, pp 8690. doi: 10.1017/S000192400002025X.Google Scholar
Mayer, Y., Kamliya, J.H., Szöoke, M., Ali, S.A.S. and Azarpeyvand, M. Design and performance of an aeroacoustic wind tunnel facility at the University of Bristol, Appl. Acoust., 2019, 255, pp 358370. doi: 10.1016/j.apacoust.2019.06.005.CrossRefGoogle Scholar
Calautit, J.K., Chaudhry, H.N., Hughes, B.R. and Sim, L.F. A validated design methodology for a closed-loop subsonic wind tunnel, J. Wind Eng. Ind. Aerodyn., 2014, 125, pp 180194. doi: 10.1016/j.jweia.2013.12.010.CrossRefGoogle Scholar
Medeiros, M.A.F. The nonlinear behaviour of modulated Tollmien-Schilichting waves, PhD thesis, University of Cambridge, 1996.CrossRefGoogle Scholar
Placidi, M., Gaster, M. and Atkin, C.J. Acoustic excitation of Tollmien–Schlichting waves due to localised surface roughness, J. Fluid Mech., 2020, 895. doi: 10.1017/jfm.2020.349.Google Scholar
Quayle, A.R., Dowling, A.P., Graham, W.R. and Babinsky, H. Obtaining absolute acoustic spectra in an aerodynamic wind tunnel, J. Sound Vibr., 2011, 330, pp 22492264. doi: 10.1016/j.jsv.2010.10.039.CrossRefGoogle Scholar
Banks, J., Giovannetti, L.M., Soubeyran, X., Wright, A.M., Turnock, S.R. and Boyd, S.W. Assessment of digital image correlation as a method of obtaining deformations of a structure under fluid load, J. Fluids Struct., 2015, 58, pp 173187. doi: 10.1016/j.jfluidstructs.2015.08.007.CrossRefGoogle Scholar
Devenport, W., Bak, C., Brown, K., Borgoltz, A., ’Osterlund, J. and Davidsson, P. Design and operation of hybrid aeroacoustic wind tunnels, Tech Rep STO-EN-AVT-287-06, NATO, 2017. URL: https://www.sto.nato.int/publications/STO%20Educational%20Notes/STO-EN-AVT-287/EN-AVT-287-06.pdf.Google Scholar
Bergmann, A. The aeroacoustic wind tunnel DNW-NWB, 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), 2012, p 2173. doi: 10.2514/6.2012-2173.CrossRefGoogle Scholar
Pott-Pollenske, M. and Delfs, J. Enhanced capabilities of the aeroacoustic wind tunnel Braunschweig, 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference), 2008, p 2910. doi: 10.2514/6.2008-2910.CrossRefGoogle Scholar
Urzynicok, F. Separation Control by Flow-Induced Oscillations of a Resonator, PhD thesis, Technische UniversitÄt Berlin, 2008. URL: https://pdfs.semanticscholar.org/2774/ba0ba06c7048e332f2d91f02d15937489c66.pdf.Google Scholar
Plogmann, B. and Würz, W. Aeroacoustic measurements on a NACA 0012 applying the coherent particle velocity method, Exp. Fluids, 2013, 54, p 1556. doi: 10.1007/s00348-013-1556-9.CrossRefGoogle Scholar
Romblad, J., Ohno, D., Nemitz, T., Würz, W. and Krämer, E. Laminar to turbulent transition due to unsteady inflow conditions: wind tunnel experiments at increased turbulence levels, Deutscher Luft- und Raumfahrtkongress 2018, 2018, p 480138. URL: https://www.dglr.de/publikationen/2018/480138.pdf.Google Scholar
Santana, L.D., Sanders, M.P., Venner, C.H. and Hoeijmakers, H.W. The UTwente aeroacoustic wind tunnel upgrade, 2018 AIAA/CEAS Aeroacoustics Conference, 2018, p 3136. doi: 10.2514/6.2018-3136.CrossRefGoogle Scholar
Llorente, E., Gorostidi, A., Jacobs, M., Timmer, W.A., Munduate, X. and Pires, O. Wind tunnel tests of wind turbine airfoils at high reynolds numbers, J. Phys. Conf. Ser., 2014, 524, p 012012. doi: 10.1088/1742-6596/524/1/012012.CrossRefGoogle Scholar
Nicolas, F., Donjat, D., Plyer, A., Champagnat, F., Le, B.G., Micheli, F., Cornic, P., Le, S.Y. and Deluc, J.M. Experimental study of a co-flowing jet in ONERA’s F2 research wind tunnel by 3D background oriented Schlieren, Meas. Sci. Technol., 2017, 28, p 085302. doi: 10.1088/1361-6501/aa7827.CrossRefGoogle Scholar
Fischer, J. and Doolan, C. Improving acoustic beamforming maps in a reverberant environment by modifying the cross-correlation matrix, J. Sound Vibr., 2017, 411, pp 129147. doi: 10.1016/j.jsv.2017.09.006.CrossRefGoogle Scholar
Araújo, T.B.d. Finite bluff body wake control using boundary layer triggered transition, PhD thesis, Aeronautics Institute of Technology, 2012. URL: http://www.bdita.bibl.ita.br/tesesdigitais/64160.pdf.Google Scholar
Zverkov, I., Zanin, B. and Kozlov, V. Disturbances growth in boundary layers on classical and wavy surface wings, AIAA J., 2008, 46, pp 31493158. doi: 10.2514/1.37562.CrossRefGoogle Scholar
Ito, H., Kobayashi, R. and Kohama, Y. The low-turbulence wind tunnel at tohoku university, Aeronaut. J., 1992, 96, pp 141151. doi: 10.1017/S0001924000024738.Google Scholar
Ito, T., Ura, H., Nakakita, K., Yokokawa, Y., Wing, F.N.G., Burdisso, R., Iwasaki, A., Fujita, T., Ando, N., Shimada, N. and Yamamoto, K. Aerodynamic/aeroacoustic testing in anechoic closed test sections of low-speed wind tunnels, 16th AIAA/CEAS Aeroacoustics Conference, 2010, p 3750. doi: 10.2514/6.2010-3750.CrossRefGoogle Scholar
Meredith, S., Martindale, W., Benetti-Longhini, L., Boylan, D. and Chaney, M. Aerodynamic commissioning results for the Korea Air Force Academy Subsonic Wind Tunnel, 38th Aerospace Sciences Meeting and Exhibit, 2000, p 290. doi: 10.2514/6.2000-290.CrossRefGoogle Scholar
Liu, P., Xing, Y., Guo, H. and Li, L. Design and performance of a small-scale aeroacoustic wind tunnel, Appl. Acoust., 2017, 116, pp 6569. doi: 10.1016/j.apacoust.2016.09.014.CrossRefGoogle Scholar
Erm, L.P. and Jacquemin, P.P. Calibration of the flow in the test section of the research wind tunnel at DST Group, Tech Rep DST Group-TN-1468, Defence Science and Technology Organisation Fishermans Bend (Australia), 2015. URL: https://apps.dtic.mil/sti/citations/AD1000004.Google Scholar
Erm, L.P. Calibration of the flow in the extended test section of the low-speed wind tunnel at DSTO, Tech Rep DSTO-TR-1073, Defence Science and Technology Organisation Victoria (Australia), 2003. URL: https://apps.dtic.mil/dtic/tr/fulltext/u2/a397771.pdf.Google Scholar
Quick, H., Widjaja, R., Anderson, B., Woodyatt, B., Snowden, A.D. and Lam, S. Phase I experimental testing of a generic submarine model in the DSTO low speed wind tunnel, Tech Rep DSTO-TN-1101, Defence Science and Technology Organisation Victoria (Australia), 2012. URL: https://apps.dtic.mil/dtic/tr/fulltext/u2/a569260.pdf.Google Scholar
Nickels, T.B., Marusic, I., Hafez, S. and Chong, M.S. Evidence of the $\mathrm{k}_{1}^{-1}$ law in a high-reynolds-number turbulent boundary layer, Phys. Rev. Lett., 2005, 95, 074501. doi: 10.1103/PhysRevLett.95.074501.CrossRefGoogle ScholarPubMed
Avelar, A.C., Uyeno, S., Marto, A.G.,Mello, O.A.D.F. and Truyts, C.F Velocity profile and turbulence intensity measurements in the TA-2 wind tunnel, 18th International Congress of Mechanical Engineering (COBEM2005), Brazilian Society of Mechanical Sciences and Engineering (ABCM), 2005, p 8.Google Scholar
Assato, M.,Girardi, R.D.M. and Fico, N.G.D.C.R.Jr. Calibração da seção de testes do túnel de vento de ensino e de pesquisa do ITA, Tech Rep, Instituto Tecnológico de Aeronâutica, 2004.Google Scholar
Santana, L.D., Carmo, M., Catalano, F.M. and Medeiros, M.A.F. The update of an aerodynamic wind-tunnel for aeroacoustics testing, J. Aerospace Technol. Manag., 2014, 6, pp 111118. doi: 10.5028/jatm.v6i2.308.CrossRefGoogle Scholar
Kröber, S. Comparability of microphone array measurements in open and closed wind tunnels, PhD thesis, Technische Universität Berlin, 2013. URL: https://opus4.kobv.de/opus4-tuberlin/frontdoor/index/index/docId/4564.Google Scholar
Amaral, F.R., Pagani, C.C. Jr, Himeno, F.H.T., Souza, D.S. and Medeiros, M.A.F. On closed-section wind-tunnel aeroacoustic experiments with a two-dimensional lifting body, Appl. Acoust., 2019, 148, pp 409422. doi: 10.1016/j.apacoust.2018.12.029.CrossRefGoogle Scholar
Smith, B.S., Camargo, H.E., Burdisso, R.A. and Devenport, W.J. Development and testing of a novel acoustic wind tunnel concept, 11th AIAA/CEAS Aeroacoustics Conference, 2005, p 3053. doi: 10.2514/6.2005-3053.CrossRefGoogle Scholar
Sijtsma, P. and Holthusen, H. Corrections for mirror sources in phased array processing techniques, 9th AIAA/CEAS Aeroacoustics Conference, 2003, p 3196. doi: 10.2514/6.2003-3196.CrossRefGoogle Scholar
Fenech, B. and Takeda, K. Beamforming in highly reverberant wind tunnels possibilities and limitations, 14th International Congress on Sound and Vibration (ICSV14), Australian Acoustics Society, 2007, p 8. URL: http://eprints.soton.ac.uk/48626/.Google Scholar
Shin, H.-C., Graham, W., Sijtsma, P., Andreou, C. and Faszer, A.C. Implementation of a phased microphone array in a closed-section wind tunnel, AIAA J., 2007, 45, pp 28972909. doi: 10.2514/1.30378.CrossRefGoogle Scholar
Koop, L. and Ehrenfried, K. Microphone-array processing for wind-tunnel measurements with strong background noise, 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference), 2008, p 2907. doi: 10.2514/6.2008-2907.CrossRefGoogle Scholar
Fleury, V. and Davy, R. Beamforming-based noise level measurements in hard-wall closed-section wind tunnels, 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), 2012, p 2226. doi: 10.2514/6.2012-2226.CrossRefGoogle Scholar
Amaral, F.R., Pagani, C.C. Jr and Medeiros, M.A.F. Improvements in closed-section wind-tunnel beamforming experiments of acoustic sources distributed along a line, Appl. Acoust., 2019, 156, pp 336–350. doi: 10.1016/j.apacoust.2019.07.022.CrossRefGoogle Scholar
Pagani, C.C. Jr, Souza, D.S. and Medeiros, M.A.F. Slat noise: aeroacoustic beamforming in closed-section wind tunnel with numerical comparison, AIAA J., 2016, 54, pp 21002115. doi: 10.2514/1.J054042.CrossRefGoogle Scholar
Choudhari, M.M. and Lockard, D.P. Simulations & Measurements of Airframe Noise: A BANC Workshops Perspective, Tech Rep NF1676L-23007, NASA, 2016. URL: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160012014.pdf.Google Scholar
Amaral, F.R., Himeno, F.H.T., Souza, D.S., Pagani, C.C. Jr and Medeiros, M.A.F. Effect of bubble seal on slat noise, AIAA J., 2019, 57, pp 1608–1623. doi: 10.2514/1.J057381.CrossRefGoogle Scholar
Souza, D.S., Rodríguez, D., Himeno, F.H.T. and Medeiros, M.A.F. Dynamics of the large scale structures and noise emission in airfoil slats, J. Fluid Mech., 2019, 875, pp 10041034. doi: 10.1017/jfm.2019.496.CrossRefGoogle Scholar
Bradshaw, P. The effect of wind-tunnel screens on nominally two-dimensional boundary layers, J. Fluid Mech., 1964, 22, pp 679687. doi: 10.1017/S0022112065001064.CrossRefGoogle Scholar
Mehta, R.D. and Bradshaw, P. Design rules for small low speed wind tunnels, Aeronaut. J., 1979, 83, pp 443453. doi: 10.1017/S0001924000031985.Google Scholar
Barlow, J.B., Rae, W.H. Jr and Pope, A. Low Speed Wind Tunnel Testing, 3rd ed, John Wiley & Sons, 1999.Google Scholar
Rumsey, C.L., Biedron, R.T., Farassat, F. and Spence, P.L. Ducted-fan engine acoustic predictions using a Navier-Stokes code, J. Sound Vibr., 1998, 213, pp 643–664. doi: 10.1006/jsvi.1998.1519.CrossRefGoogle Scholar
Huff, D. Fan noise prediction – Status and needs, 36th AIAA Aerospace Sciences Meeting and Exhibit, 1998, p 177. doi: 10.2514/6.1998-177.CrossRefGoogle Scholar
Fukano, T., Kodama, Y. and Senoo, Y. Noise generated by low pressure axial flow fans, I: modeling of the turbulent noise, J. Sound Vibr., 1977, 50, pp 6374. doi: 10.1016/0022-460X(77)90551-X.CrossRefGoogle Scholar
Sharland, I.J., Sources of noise in axial flow fans, J. Sound Vibr., 1964, 1, pp 302322. doi: 10.1016/0022-460X(64)90068-9.CrossRefGoogle Scholar
Tyler, J.M. and Sofrin, T.G. Axial flow compressor noise studies, SAE Tech Paper, 1962, p 620532. doi: 10.4271/620532.CrossRefGoogle Scholar
Mehta, R.D. The aerodynamic design of blower tunnels with wide-angle diffusers, Prog. Aerospace Sci., 1977, 18, pp 59120. doi: 10.1016/0376-0421(77)90003-3.CrossRefGoogle Scholar
Cox, T.J. and D’antonio, P. Acoustic Absorbers and Diffusers: Theory, Design and Application, CRC Press, 2009.CrossRefGoogle Scholar
Loehrke, R.I. and Nagib, H.M. Control of free-stream turbulence by means of honeycombs: a balance between suppression and generation, J. Fluids Eng., 1976, 98, pp 342351. doi: 10.1115/1.3448313.CrossRefGoogle Scholar
Saric, W. and Reshotko, E. Review of flow quality issues in wind tunnel testing, 20th AIAA Advanced Measurement and Ground Testing Technology Conference, 1998, p 2613. doi: 10.2514/6.1998-2613.CrossRefGoogle Scholar
Groth, J. and Johansson, A.V. Turbulence reduction by screens, J. Fluid Mech., 1988, 197, pp 139155. doi: 10.1017/S0022112088003209.CrossRefGoogle Scholar
Bradshaw, P. and Pankhurst, R.C. The design of low-speed wind tunnels, Prog. Aerospace Sci., 1964, 5, pp 169. doi: 10.1016/0376-0421(64)90003-X.CrossRefGoogle Scholar
Whitehead, L.G., Wu, L.Y. and Waters, M.H.L. Contracting ducts of finite length, Aeronaut. Q., 1951, 2, pp 254271. doi: 10.1017/S0001925900000469.CrossRefGoogle Scholar
Perry, A.E. Hot-Wire Anemometry, Clarendon Press, 1982.Google Scholar
Bruun, H.H. Hot-wire Anemometry: Principles and Signal Analysis, Oxford University Press, 1995.CrossRefGoogle Scholar
Leclercq, D., Doolan, C. and Reichl, J. Development and validation of a small-scale anechoic wind tunnel, Proceedings of the 14th International Congress on Sound and Vibration, AAS, 2007, pp 105:www1–www8. URL: http://hdl.handle.net/2440/43270.Google Scholar
Winkler, J., Temel, F.Z. and Carolus, T.Concept, design and characterization of a small aeroacoustic wind tunnel facility with application to fan blade measurements, Proceedings of the Fan Noise 2007, 2007, p 12. URL: https://www.mb.uni-siegen.de/iftsm/forschung/c2007_winkler_etal_fn07.pdf.Google Scholar
Chong, T.P., Joseph, P.F. and Davies, P.O.A.L. Design and performance of an open jet wind tunnel for aero-acoustic measurement, Appl. Acoust., 2009, 70, pp 605614. doi: 10.1016/j.apacoust.2008.06.011.CrossRefGoogle Scholar
Sarradj, E., Fritzsche, C., Geyer, T. and Giesler, J. Acoustic and aerodynamic design and characterization of a small-scale aeroacoustic wind tunnel, Appl. Acoust., 2009, 70, pp 10731080. doi: 10.1016/j.apacoust.2009.02.009.CrossRefGoogle Scholar
Holthusen, H., Bergmann, A. and Sijtsma, P. Investigations and measures to improve the acoustic characteristics of the German-Dutch Wind Tunnel DNW-LLF, 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), 2012, p 2176. doi: 10.2514/6.2012-2176.CrossRefGoogle Scholar
Vathylakis, A., Chong, T.P. and Kim, J.H. Design of a low-noise aeroacoustic wind tunnel facility at Brunel University, 20th AIAA/CEAS Aeroacoustics Conference, 2014, p 3288. doi: 10.2514/6.2014-3288.CrossRefGoogle Scholar
Wickern, G. and Lindener, N. The Audi aeroacoustic wind tunnel: final design and first operational experience, J. Passenger Cars Mech. Syst. J., 2000, 109, pp 13871402. URL: https://www.jstor.org/stable/44686976.Google Scholar
Kim, M.-S., Lee, J.-H., Kee, J.-D. and Chang, J.-H. Hyundai full scale aero-acoustic wind tunnel, SAE 2001 World Congress, 2001, pp 2001–01–0629. doi: 10.4271/2001-01-0629.CrossRefGoogle Scholar
Maeda, T. and Kondo, Y. RTRI’s Large-scale low-noise wind tunnel and wind tunnel tests, Q. Report RTRI, 2001, 42, pp 6570. URL: https://www.jstage.jst.go.jp/article/rtriqr/42/2/42_2_65/_pdf/-char/ja.CrossRefGoogle Scholar
Duell, E., Yen, J., Arnette, S. and Walter, J. Recent advances in large scale aeroacoustic wind tunnels, 8th AIAA/CEAS Aeroacoustics Conference & Exhibit, 2002, p 2503. doi: 10.2514/6.2002-2503.CrossRefGoogle Scholar
Bendat, J.S. and Piersol, A.G. Random Data: Analysis and Measurement Procedures, 4th ed, John Wiley & Sons, 2011, Hoboken, New Jersey.Google Scholar
Serrano, R.J.C., Amaral, F.R., Bresci, C.S. and Medeiros, M.A.F. Low Acoustic Noise and Turbulence (LANT) wind-tunnel at USP-EESC, 2018 Applied Aerodynamics Conference, 2018, p 3007. doi: 10.2514/6.2018-3007.CrossRefGoogle Scholar
Brooks, T.F. and Humphreys, W.M. Effect of directional array size on the measurement of airframe noise components, 5th AIAA/CEAS Aeroacoustics Conference and Exhibit, 1999, p 1958. doi: 10.2514/6.1999-1958.CrossRefGoogle Scholar
Hanson, R.E., Buckley, H.P. and Lavoie, P. Aerodynamic optimization of the flat-plate leading edge for experimental studies of laminar and transitional boundary layers, Exp. Fluids, 2012, 53, pp 863871. doi: 10.1007/s00348-012-1324-2.CrossRefGoogle Scholar
Paula, I.B., Würz, W., Mendonça, M.T. and Medeiros, M.A.F. Interaction of instability waves and a three-dimensional roughness element in a boundary layer, J. Fluid Mech., 2017, 824, pp 624660. doi: 10.1017/jfm.2017.362.CrossRefGoogle Scholar
Medeiros, M.A.F. and Gaster, M. The influence of phase on the nonlinear evolution of wavepackets in boundary layers, J. Fluid Mech., 1999, 397, pp 259283. doi: 10.1017/S0022112099006175.CrossRefGoogle Scholar
Schubauer, G.B. and Klebanoff, P.S. Contributions on the mechanics of boundary-layer transition, Tech Rep 3489, NASA, 1955. URL: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930084334.pdf.Google Scholar
Schubauer, G.B. and Skramstad, H.K. Laminar boundary-layer oscillations and stability of laminar flow, J. Aeronaut. Sci., 1947, 14, p 10. doi: 10.2514/8.1267.CrossRefGoogle Scholar
Crouch, J.D., Kosorygin, V.S. and Sutanto, M.I. Modeling gap effects on transition dominated by Tollmien-Schlichting instability, AIAA AVIATION 2020 FORUM, 2020, p 3075. doi: 10.2514/6.2020-3075.Google Scholar
Crouch, J.D. and Kosorygin, V.S. Surface step effects on boundary-layer transition dominated by Tollmien–Schlichting instability, AIAA J., 2020, 58, pp 29432950. doi: 10.2514/1.J058518.CrossRefGoogle Scholar
Mueller, T.J. (Ed), Aeroacoustic Measurements, Springer-Verlag, 2002, Berlin, Heidelberg. doi: 10.1007/978-3-662-05058-3.Google Scholar
Amaral, F.R., Serrano, R.J.C. and Medeiros, M.A.F. Design of microphone phased arrays for acoustic beamforming, J. Brazil. Soc. Mech. Sci. Eng., 2018, 40, p 354. doi: 10.1007/s40430-018-1275-5.CrossRefGoogle Scholar
Pagani, C.C. Jr, Caldas, L.C. and Medeiros, M.A.F. An experimental and numeric investigation towards a reliable acoustic pressure level estimate using phased-array techniques, 25th AIAA/CEAS Aeroacoustics Conference, 2019, p 2700. doi: 10.2514/6.2019-2700.CrossRefGoogle Scholar
Chiariotti, P., Martarelli, M. and Castellini, P. Acoustic beamforming for noise source localization – reviews, methodology and applications, Mech. Syst. Signal Process., 2019, 120, pp 422448. doi: 10.1016/j.ymssp.2018.09.019.CrossRefGoogle Scholar
Merino-Martínez, R., Sijtsma, P., Snellen, M., Ahlefeldt, T., Antoni, J., Bahr, C.J., Blacodon, D., Ernst, D., Finez, A., Funke, S., Geyer, T.F., Haxter, S., Herold, G., Huang, X., Humphreys, W.M., Leclère, Q., Malgoezar, A., Michel, U., Padois, T., Pereira, A., Picard, C., Sarradj, E., Siller, H., Simons, D.G. and Spehr, C. A review of acoustic imaging methods using phased microphone arrays, CEAS Aeronaut. J., 2019, pp 134. doi: 10.1007/s13272-019-00383-4.Google Scholar
Blake, W.K. Mechanics of Flow-Induced Sound and Vibration - Volume 1: General Concepts and Elementary Sources, 2nd ed, Elsevier Academic Press, 2017.Google Scholar