Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-22T15:13:18.148Z Has data issue: false hasContentIssue false

Investigation of the Physical Properties of Gases at High Temperatures*

Published online by Cambridge University Press:  04 July 2016

K. C. Lapworth*
Affiliation:
Aerodynamics Division, National Physical Laboratory

Extract

At the very high flight speeds of ballistic missiles, re-entering satellites and meteorites, the air in contact with the body may attain very high temperatures and may even become ionised. For example, the air in the stagnation region of a low-drag ballistic missile re-entering the Earth's atmosphere can reach a temperature of 8000°K and the electron density may be as high as 1016 per c.c. In any experimental work on high enthalpy flow it therefore becomes necessary to have techniques for measuring these high temperatures and high electron densities. The aim of the present paper is to describe techniques for measuring these quantities.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 1964

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Schultz, D. L. Properties of Gases at High Temperatures— Ionization Measurements. Proceedings of the Eleventh Symposium of the Colston Research Society, p. 301. Butterworths Scientific Publications, 1960.Google Scholar
2.Gaydon, A. G. and Wolfhard, H. G.Flames. Their Structure, Radiation and Temperature. Chapter 10. 2nd Edition Revised. Chapman and Hall Ltd., London, 1960.Google Scholar
3.Griffiths, E. and Awbery, J. H.Measurement of Flame Temperatures. Proc. Roy. Soc. A., Vol. 123, p. 401, 1929.Google Scholar
4.Bundy, F. P. and Strong, H. M.Physical Measurements in Gas Dynamics and Combustion. Part 2. I. Measurement of Flame Temperature, Pressure and Velocity. O.U.P., 1955.Google Scholar
5.Clouston, J. G., Gaydon, A. G. and Glass, I. I.Temperature Measurements of Shock Waves by the Spectrum-Line Reversal Method. Proc. Roy. Soc. A., Vol. 248, p. 429, 1958.Google Scholar
6.Clouston, J. G., Gaydon, A. G. and Hurle, I. R.Temperature Measurements of Shock Waves by Spectrum-Line Reversal. II. A Double-Beam Method. Proc. Roy. Soc. A., Vol. 252, p. 143, 1959.Google Scholar
7.Gaydon, A. G. and Hurle, I. R.Temperature Measurements of Shock Waves and Detonations by Spectrum-Line Reversal. III. Observations with Chromium Lines. Proc. Roy. Soc. A., Vol. 262, p. 38, 1961.Google Scholar
8.Stollery, J. L. Stagnation Temperature Measurements in a Hypersonic Gun-Tunnel Using the Sodium Line Reversal Method. Imperial College of Science and Technology, Aeronautics Department, Technical Note No. 16, 1960.Google Scholar
9.Lapworth, K. C, Townsend, J. E. G. and Bridgeman, K., Reservoir Temperature Measurements in a Hypersonic Shock Tunnel by Sodium Line Reversal. Part I. Single-Beam Method. A.R.C. 23,341, 1961.Google Scholar
10.Barret, P.L'Influence des Aberrations de Sphéricité et de la Diffraction surles Mesures de température par la Methode du Renversement des Raies. Comptes Rendus de l'Académie des Sciences, Vol. 226, p. 396, 1948.Google Scholar
11.Holder, D. W. and Schultz, D. L. On the Flow in a Reflected-Shock Tunnel. ARC 22,152, 1960.Google Scholar
12.De Vos, J. C.A New Determination of the Emissivity of Tungsten Ribbon. Physica, Vol. 20, p. 690, 1954.Google Scholar
13.Wittliff, C. E., Wilson, M. R. and Hertzberg, A.The Tailored-Interface Hypersonic Shock Tunnel. Journal of the Aerospace Sciences, Vol. 26, 4, p. 219.Google Scholar
14.Von Euler, J.Der Graphitbogen als Spektralphotometrisches Strahldichtenormal im Gebiet von 0·25 bis 1·8 μ. Annalen der Physik, Vol. 11, p. 203, 1953.Google Scholar
15.Gicquel, M. and Nadaud, L.Mesure Optique des Temperatures des Gaz Pouvant Atteindre 10 000°K. La Recherche Aéronautique, No. 84, p. 31, 1961.Google Scholar
16.Reeves, E. M. and Parkinson, W. H. Spectral Energy Distribution and Brightness Temperatures in Continuous Flash Sources. Proceedings of the Fifth International Conference on Ionization Phenomena in Gases, 1961.Google Scholar
17.Margenau, H., and Lewis, M.Structure of Spectral Lines from Plasmas. Review of Modern Physics, Vol. 31, 3, p. 569, 1959.Google Scholar
18.Bogen, P.Experimental Test of the Holtsmark Theory of Line Broadening. Zeitschrift fur Physik, Vol. 144, p. 62, 1957.Google Scholar
19.Griem, H. R., Kolb, A. C. and Shen, K. Y.Stark Broadening of Hydrogen Lines in a Plasma. Physical Review, Vol. 116, p. 4, 1959.CrossRefGoogle Scholar
20.Griem, H. R., Kolb, A. C. and Shen, K. Y. Stark Broadening of Hydrogen Lines in a Plasma. NRL Report 5455, 1960. (This contains calculated line shapes not given in Ref. 19).Google Scholar
21.Holtsmark, J.On the Broadening of Spectral Lines. Annalen der Physik, Vol. 58, p. 577, 1919.Google Scholar
22.Schmaljohann, P. Pressure Broadening of Hydrogen Lines According to the Holtsmark Theory. Staatsexamens-Arbeit, Keil, 1936.Google Scholar
23.Iurgens, G.Temperature and Electron Density in a Water- Stabilised Arc. Zeitschrift fur Physik, Vol. 134, p. 21. 1952.Google Scholar
24.Griem, H.Stark Effect Broadening of the Balmer Lines at High Electron Densities. Zeitschrift für Physik, 137, p. 280, 1954.Google Scholar
25.Unsöld, A.On the Calculation of Partition Functions for Atoms and Ions in a Partly Ionised Gas. Zeitschrift für Astrophysik, Vol. 24, p. 355, 1948.Google Scholar
26.Pusey, P. S., Lapworth, K. C. and Metherell, A. F. Deter mination of Ion Density and Temperature of a Water- Stabilised Arc from Observations of the Line Profiles of the Hydrogen Lines Hβand Hγ ARC 23,162, 1961. (Current Paper No. 614.)Google Scholar
27.Wolf-Dieter , Henkel.On the Stark Effect Broadening of the Higher Balmer Lines. Zeitschrift fiir Physik, Vol. 137, p. 295, 1954.Google Scholar
28.Poirot, A. Research on Anode Rays. Application to the Study of the Stark Effect. Annales de Physique, Series 11, 4, p. 533, 1935.Google Scholar
29.Lapworth, K. C.Stark Broadening of the Spectrum Line 4603 Å of Lithium. Nature, Vol. 192, No. 4799, p. 252, 1961.Google Scholar