No CrossRef data available.
Article contents
Infrared radiation characteristics of an aero-engine binary plug nozzle with various slot cooling configurations
Published online by Cambridge University Press: 12 February 2025
Abstract
For binary plug nozzle, the plug cone is exposed to high-temperature mainstream flow, making it one of the nozzle’s high-temperature components. This paper uses the Realizable k-ε turbulence model and the reverse Monte Carlo method to numerically investigate the aerodynamic and infrared radiation characteristics of the plug nozzle. Various slot cooling configurations were adopted to study the nozzle’s infrared radiation in detail. Results indicate that compared to the baseline nozzle, the plug nozzle’s performance is slightly reduced due to the decrease in effective area of flow over the plug cone. Introducing slot cooling at the rear edge provides significant infrared suppression benefits at low detection angles and notably reduces infrared radiation discrepancy with baseline nozzle at high detection angles. The cooling air from slots causes the nozzle jet to exhibit a ‘thermal layered’ feature. With the same total coolant mass flow, the ‘leading edge + trailing edge’ cooling configuration can lower the area-averaged wall temperature of the plug cone by 5.5% – 12.3%. However, its infrared radiation intensity at each detection angle on the pitch detection plane is higher than that of the ‘trailing edge’ configuration. The significance of leading-edge cooling is focused more on thermal protection for the plug. Thus, it is essential to balance coolant mass flow distribution between infrared radiation suppression and thermal protection.
Keywords
- Type
- Research Article
- Information
- Copyright
- © The Author(s), 2025. Published by Cambridge University Press on behalf of Royal Aeronautical Society