Published online by Cambridge University Press: 27 January 2016
A re-cooled cycle has been proposed for a regeneratively cooled scramjet to reduce the hydrogen fuel flow for cooling. Upon the completion of the first cooling, fuel can be used for secondary cooling by transferring the enthalpy from fuel to work. Fuel heat sink (cooling capacity) is thus repeatedly used and fuel heat sink is indirectly increased. Instead of carrying excess fuel for cooling or seeking for any new coolant, the cooling fuel flow is reduced, and fuel onboard is adequate to satisfy the cooling requirement for the whole hypersonic vehicle. A performance model considering flow and heat transfer is build. A model sensitivity study of inlet temperature and pressure reveals that, for given exterior heating condition and cooling panel size, fuel heat sink can be obviously increased at moderate inlet temperature and pressure. Simultaneously the low-temperature heat transfer deterioration and Mach number constrains can also be avoided.