Published online by Cambridge University Press: 28 July 2016
From a general consideration of the available data on the flutter of wings with localised masses certain deductions are made as to the possible types of flutter that can occur. On the basis of these deductions it is shown that there is an optimum choice of modes for use in flutter calculations for wings with localised masses. These modes are obtained with artificial constraints imposed on the wing at the localised mass section fixing the wing at this section in translation and/or pitch. It is deduced that for certain mass locations types of flutter are obtained that are insensitive to increase of localised mass, beyond a certain value, with flutter speeds considerably greater than that of the fixed root bare wing. It is also deduced that for the majority of aircraft configurations the maximum flutter speeds for these types of flutter will be realised when the localised mass is in the region of two-thirds semi-span from the root. A limited theoretical investigation is made for a rectangular unswept uniform wing with symmetric and antisymmetric body freedoms, to illustrate and confirm the conclusions derived from general considerations. At the same time the investigation shows that an ill placed localised mass can reduce the wing flutter speed to a very low value.