Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-22T10:22:15.808Z Has data issue: false hasContentIssue false

Flight in nature II: How animal flyers land

Published online by Cambridge University Press:  27 January 2016

SH. Smith*
Affiliation:
School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this review paper, different landing strategies of diverse species of animal flyers and gliders, both extinct and extant, are analysed. These methods vary depending on the animal group and the sensory system used by the animal to detect its landing site. In almost all species the use of delayed stall during the landing manoeuvre was observed. Sometimes wing flapping was used to aid in deceleration. With respect to guidance and navigation, most insect, bird and mammal gliders use their vision to guide them to landing via optical flow or motion parallax. Bats, which are nocturnal creatures, rely on their auditory system as they use echolocation to find their nesting site. Some butterfly and moth species guide themselves to landing using their olfactory sense as they follow pheromone trails. The information presented here can be used as a source of information for novel bio-inspired unmanned aircraft design.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 2015

References

1.Jiménez, R.A. and Smith, H. Flight in nature I. take-off in animal flyers, 2014.Google Scholar
2.Kurtulus, D.F., David, L., Farcy, A. and Alemdaroglu, N.Aerodynamic characteristics of flapping motion in hover, Exp Fluids, 2008, 44, (1), pp 2336.CrossRefGoogle Scholar
3.Keshavan, J. and Wereley, N.M. Design and development of a high frequency biologically inspired flapping wing mechanism. Collection of Technical Papers – AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. 2007: 1-11-1053.CrossRefGoogle Scholar
4.Hrabar, S., Sukhatme, G.S., Corke, P., Usher, K. and Roberts, J. Combined optic-flow and stereo-based navigation of urban canyons for a UAV. 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS. 2005: 302-309-309.Google Scholar
5.Wang, J., Garrat, L., Wang, J.J., Han, S. and Sinclair, D. Integration of GPS/INS/vision sensors to navigate unmanned aerial vehicles. XXI International Society for Photogrammetry and Remote Sensing Conference, Commission I. 2008: pp 963970.Google Scholar
6.Sanfourche, M., Delaune, J. and Le Besnerais, G., et al Perception for UAV: Vision-based and environment modeling, Aerospace Lab, 2012; AL04, (4), pp 119.Google Scholar
7.Yun, B., Chen, B.M., Lum, K.Y. and Lee, T.H.Design and implementation of a leader-follower cooperative control system for unmanned helicopters, J Control Theory and Applications, 2010, 8, (1), pp 6168.CrossRefGoogle Scholar
8.Bennet, D.J., McInnes, C.R., SuzuKi, M. and Uchiyama, K.Autonomous three-dimensional formation flight for a swarm of unmanned aerial vehicles, J Guid Control Dynam, 2011, 34, (6), pp 18991908.CrossRefGoogle Scholar
9.Langelaan, J.W.Gust energy extraction for mini and micro uninhabited aerial vehicles, J Guid Control Dynam, 2009; 32, (2), pp 463472.CrossRefGoogle Scholar
10.Chakrabarty, A. and Langelaan, J.W.Energy-based long-range path planning for soaring-capable unmanned aerial vehicles, J Guid Control Dynam, 2011, 34, (4), pp 10021015.CrossRefGoogle Scholar
11.Dudley, R.The biomechanics of insect flight: Form, function, evolution. Princeton, NJ, USA. ISBN 0691094918: Princeton University Press; 2000.CrossRefGoogle Scholar
12.Nachtigall, W.Insects In Flight: A Glimpse Behind the Scenes in Biophysical Research, London, UK, ISBN 0070457360: Allen and Unwin, 1974.Google Scholar
13.Borst, A.Time course of the houseflies’ landing response, Biol Cybern, 1986, 54, (6), pp 379383.CrossRefGoogle Scholar
14.Fernández Pérez de Talens, A. and Taddei Ferretti, C.Landing reaction of musca domestica: Dependence on dimensions and position of the stimulus, J Exp Biol, 1970, 52, (2), pp 233256.CrossRefGoogle Scholar
15.Wagner, H.Flow-field variables trigger landing in flies, Nature, 1982, 297, (5862), pp 147148.CrossRefGoogle Scholar
16.Van Breugel, F. and Dickinson, M.H.The visual control of landing and obstacle avoidance in the fruit fly drosophila melanogaster, J Exp Biol, 2012, 215, (11), pp 17831798.CrossRefGoogle ScholarPubMed
17.Tammero, L.F. and Dickinson, M.H.Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly, drosophila melanogaster, J Exp Biol, 2002, 205, (18), pp 27852798.CrossRefGoogle ScholarPubMed
18.Evangelista, C., Kraft, R., Dacke, M., Reinhard, J. and Srinivasan, M.V.The moment before touchdown: Landing manoeuvres of the honeybee apis mellifera, J Exp Biol, 2010; 213, (2), pp 262270.CrossRefGoogle ScholarPubMed
19.Ibbotson, M.R.A motion-sensitive visual descending neurone in apis mellifera monitoring translatory flow-fields in the horizontal plane, J Exp Biol, 1991, 157, (1), pp 573577.CrossRefGoogle Scholar
20.Srinivasan, M.V., Zhang, S.W., Chahl, J.S., Barth, E. and Venkatesh, S.How honeybees make grazing landings on flat surfaces, Biol Cybern, 2000; 83, (3), pp 171183.CrossRefGoogle ScholarPubMed
21.Foster, S.P. and Harris, M.O.Factors influencing the landing of male epiphyas postvittana (walker) exhibiting pheromone-mediated flight (lepidoptera: Tortricidae), J Insect Behav, 1992, 5, (6), pp 699720.CrossRefGoogle Scholar
22.Rojas, J.C. and Wyatt, T.D.Role of visual cues and interaction with host odour during the host-finding behaviour of the cabbage moth, Entomol Exp Appl, 1999, 91, (1), pp 5965.CrossRefGoogle Scholar
23.Koshitaka, H., Arikawa, K. and Kinoshita, M.Intensity contrast as a crucial cue for butterfly landing, J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 2011, 197, (11), pp 11051112.CrossRefGoogle ScholarPubMed
24.Kral, K.Behavioural-analytical studies of the role of head movements in depth perception in insects, birds and mammals, Behav Processes, 2003, 64, (1), pp 112.CrossRefGoogle ScholarPubMed
25.Hyden, K. and Kral, K.The role of edges in the selection of a jump target in mantis religiosa, Behav Processes, 2005, 70, (2), pp 122131.CrossRefGoogle ScholarPubMed
26.Bramwell, C.D. and Whitfield, R.D.Biomechanics of pteranodon, Phil Trans R Soc B, 1974, 267 (890), pp 503581.Google Scholar
27.Chatterjee, S. and Templin, R.J.Posture, locomotion, and paleoecology of pterosaurs. Special Paper of the Geological Society of America, 2004, 376, pp 164.Google Scholar
28.Fastnacht, M.The first dsungaripterid pterosaur from the kimmeridgian of Germany and the biomechanics of pterosaur long bones, Acta Palaeontol Pol, 2005; 50, (2), pp 273288.Google Scholar
29.Wilkinson, M.T., Unwin, D.M. and Ellington, C.P.High lift function of the pteroid bone and forewing of pterosaurs. Proc R Soc B, 2006, 273, (1582), pp 119126.CrossRefGoogle ScholarPubMed
30.Chatterjee, S. and Templin, R.J.The flight dynamics of tapejara, a pterosaur from the early cretaceous of brazil with a large cranial crest, Acta Geologica Sinica, 2012, 86, (6), pp 13771388.CrossRefGoogle Scholar
31.Mazin, J.M., Billon-Bruyat, J.P. and Padian, K.First record of a pterosaur landing trackway, Proc R Soc B, 2009, 276, (1674), pp 38813886.CrossRefGoogle ScholarPubMed
32.Jack, A.Feathered Wings: A Study of The Flight of Birds, London, UK. ASIN B0000CIOC6: Methuen, 1953, p 131.Google Scholar
33.Headley, FW.The Flight of Birds. London, UK. ISBN 1152911406, Witherby & co, 1912, 163.Google Scholar
34.Lee, DN, Davies, MNO, Green, PR, and Van Der Weel, FR.Visual control of velocity of approach by pigeons when landing, J Exp Biol, 1993; 180, (1), pp 85104.CrossRefGoogle Scholar
35.Horton-Smith, C.The flight of birds, London, UK. ASIN B004TB2WKC: H. F. & G. Witherby, Ltd; 1938:182.Google Scholar
36.Hankin, E.H.Animal flight: A record of observation, London. ISBN 1152165712: Iliffe & Sons ltd; 1914:4.Google Scholar
37.McGahan, J.Flapping flight of the andean condor in nature, J Exp Biol, 1973, 58, (1), pp 239253.CrossRefGoogle ScholarPubMed
38.Carruthers, A.C., Taylor, G.K., Walker, S.M., and Thomas, A.L.R. Use and function of a leading edge flap on the wings of eagles. Collection of Technical Papers – 45th AIAA Aerospace Sciences Meeting. 2007; 1: 1-9-390.CrossRefGoogle Scholar
39.Carruthers, A.C., Thomas, A.L.R. and Taylor, G.K.Automatic aeroelastic devices in the wings of a steppe eagle aquila nipalensis, J Exp Biol, 2007, 210, (23), pp 41364149.CrossRefGoogle ScholarPubMed
40.Carruthers, A.C., Thomas, A.L.R., Walker, S.M. and Taylor, G.K.Mechanics and aerodynamics of perching manoeuvres in a large bird of prey, Aeronaut J, 2010; 114, (1161), pp 673680.CrossRefGoogle Scholar
41.Hausmann, L., Plachta, D.T.T., Singheiser, M, Brill, S. and Wagner, H.In-flight corrections in free-flying barn owls (tyto alba) during sound localization tasks, J Exp Biol, 2008, 211, (18), pp 29762988.CrossRefGoogle ScholarPubMed
42.Pennycuick, C.J.Modelling the flying bird. London. ISBN 0123742994: Academic, 2008.Google Scholar
43.Norberg, R.A. and Norberg, U.M.Take-off, landing, and flight speed during fishing flights of gavia stellata (pont.). Ornis Scandinavica, 1971, 2, (1), pp 5567.Google Scholar
44.Garthe, S., Benvenuti, S. and Montevecchi, W.A.Pursuit plunging by northern gannets (sula bassana) feeding on capelin (mallotus villosus). Proc R Soc B, 2000, 267, (1454): pp 17171722.CrossRefGoogle ScholarPubMed
45.Norberg, U.M. and Rayner, J.M.V.Ecological morphology and flight in bats (mammalia; chiroptera): Wing adaptations, flight performance, foraging strategy and echolocation, Phil Trans R Soc B, 1987, 316, (1179), pp 335427.Google Scholar
46.Riskin, D.K., Bahlman, J.W., Hubel, T.Y., Ratcliffe, J.M., Kunz, T.H. and Swartz, S.M.Bats go head-under-heels: The biomechanics of landing on a ceiling, J Exp Biol, 2009, 212, (7), pp 945953.CrossRefGoogle ScholarPubMed
47.Altenbach, J.S.Locomotor morphology of the vampire bat desmodus rotundus, Pittsburgh, PA, USA. ISBN 0943612055: American Society of Mammalogists, 1979.CrossRefGoogle Scholar
48.Tian, B. and Schnitzler, H.U.Echolocation signals of the greater horseshoe bat (rhinolophus ferrum-equinum) in transfer flight and during landing, J Acoust Soc Am, 1997, 101, (4), pp 23472364.CrossRefGoogle Scholar
49.Siemers, B.M. and Ivanova, T.Ground gleaning in horseshoe bats: Comparative evidence from rhinolophus blasii, R. euryale and R. mehelyi. Behav Ecol Sociobiol, 2004, 56, (5), pp 464471.Google Scholar
50.Melcón, M.L., Denzinger, A. and Schnitzler, H.U.Aerial hawking and landing: Approach behaviour in natterer’s bats, myotis nattereri (kuhl 1818), J Exp Biol, 2007, 210, (24), pp 44574464.CrossRefGoogle ScholarPubMed
51.Melcón, M.L., Schnitzler, H.U. and Denzinger, A.Variability of the approach phase of landing echolocating greater mouse-eared bats, J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 2009, 195, (1), pp 6977.CrossRefGoogle ScholarPubMed
52.Koblitz, J.C., Stilz, P., Pflästerer, W., Melcón, M.L. and Schnitzler, H.U.Source level reduction and sonar beam aiming in landing big brown bats (eptesicus fuscus), J Acoust Soc Am, 2011, 130, (5), pp 30903099.CrossRefGoogle ScholarPubMed
53.Yovel, Y., Geva-Sagiv, M. and Ulanovsky, N.Click-based echolocation in bats: Not so primitive after all, J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 2011, 197, (5), pp 515530.CrossRefGoogle Scholar
54.Caple, G., Balda, R.P. and Willis, W.R.The physics of leaping animals and the evolution of preflight, Am Nat, 1983; 121, (4), pp 455476.CrossRefGoogle Scholar
55.Paskins, K.E., Bowyer, A., Megill, W.M. and Scheibe, J.S.Take-off and landing forces and the evolution of controlled gliding in northern flying squirrels glaucomys sabrinus, J Exp Biol, 2007, 210, (8), pp 14131423.CrossRefGoogle ScholarPubMed
56.Gundlach, J.Designing unmanned aircraft systems a comprehensive approach. Reston, VA, USA. ISBN 1600868436, American Institute of Aeronautics and Astronautics, 2012.CrossRefGoogle Scholar
57.Ruffier, F. and Franceschini, N. Visually guided micro-aerial vehicle: Automatic take off, terrain following, landing and wind reaction. Proceedings – IEEE International Conference on Robotics and Automation, 2004, (3), pp 23392346-2346.CrossRefGoogle Scholar
58.Herissé, B., Hamel, T., Mahony, R. and Russotto, F.X.Landing a VTOL unmanned aerial vehicle on a moving platform using optical flow, IEEE Transactions on Robotics, 2012, 28, (1), pp 7789.Google Scholar
59.Lussier Desbiens, A., Asbeck, A.T. and Cutkosky, M.R.Landing, perching and taking off from vertical surfaces, Int J Robotics Res, 2011, 30, (3), pp 355370.CrossRefGoogle Scholar
60.Siddall, R. and Kovac, M.Launching the AquaMAV: Bioinspired design for aerial-aquatic robotic platforms, Bioinspir Biomim, 2014, 9, (3), pp 115.CrossRefGoogle ScholarPubMed