Published online by Cambridge University Press: 28 July 2016
In a paper in the number of this journal for November, 1925, it was shown that if a flying machine were fitted with wings of standard section and these were flapped in a rhythmical manner, the machine would be supported and propelled, its weight, dimensions and velocity being those of a typical bird; the degree of accuracy attempted in the analysis did not exceed five per cent.
A subsequent examination of the power involved established a high efficiency; but this was due to a large amount of negative work during up–beats; and although such conditions might be maintained in a mechanical model they were unlikely in a bird, which has a large muscle, the pectoralis minor, for lifting its wings. In a bird efficiency seemed to require that the angle of incidence of the outer portion during an up–beat should be negative (see §7, p. 593, of the previous paper); the angle was however made zero (see §9) in order to secure adequate lift, and it is this feature which gives rise to the negative work.
Note on page 338 * It is easily seen that r/l integrates to 5S/18, S/6 and S/18 over the outer, middle and inner thirds; r2/l2 integrates to 19S/81, 7S/81 and S/81; r3/l3 yields 65S/324, 5S/108, and S/324; r4/l4 yields 211S/1215, 31S/1215 and S/1215; and r5/l5 yields 665S/4374, 7S/486 and S/4374.
Note on page 341 * “Meteorology and the Non–Flapping Flight of Tropical Birds.” Camb. Phil. Proc, XXI., p. 371, 1923.
Note on page 342 † Loc. cit., §§ 8-10, pp. 366-8.