Published online by Cambridge University Press: 27 January 2016
Simple, approximate relations are developed that allow rapid, yet accurate, estimates of the principal mass characteristics of modern civil transport aircraft. The method is based upon an ‘aircraft mass hypothesis’ combined with data taken from Type Certificates and manufacturers’ information for 44 different Boeing and Airbus aircraft types and variants. This hypothesis links the masses of the various aircraft components, including the operational items, and the maximum payload mass to just two parameters; the passenger cabin floor area, as exemplified by the ‘design passenger number’ and the ratio of maximum zero fuel mass to maximum take-off mass, as exemplified by the non-dimensional ‘design range’. In this context, the ‘design range’ is defined as the maximum possible range when the aircraft is operating at its maximum zero fuel mass. This approach leads to the formulation of three basic ‘laws’ for aircraft mass. Special consideration is given to the identification and separation of those components that are fixed either by the design, or the certification process, and those that are free, within defined limits, to be chosen by the operator.